欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

粗糙度是指加工后材料表面的小間隙和微峰谷的不規(guī)則程度。如果光滑度低,會影響使用行業(yè)的各個方面,如密封性、耐磨性、穩(wěn)定性等。我們應(yīng)該如何改進制造工藝來提高工件的光滑度和加工精度呢?

Causes of Roughness Issues

The poor roughness?may be attributed to the following reasons:

1.Improper tool selection: Severe tool wear or poor quality can lead to issues such as burrs and cracks on the drilled surface.

2.Cutting speed too fast or too slow: Excessive cutting speed can result in a rough machining surface, while too slow a speed may lead to an unsmooth surface.

3.Improper use of coolant: Incorrect use of coolant, such as low concentration or contaminated coolant, can also result in an unsmooth surface on the drilled hole.

4.Incorrect machining parameter settings: Incorrect machining parameter settings may cause unstable cutting, thereby resulting in an unsmooth surface on the drilled hole.

roughness

Principles for Resolving Roughness Issues

To address the issue of poor machining roughness, it is necessary to address specific reasons, and the specific methods are as follows:

1.Pay attention to tool selection: Choose high-quality, rigid, and minimally wearing tools.

2.Select the appropriate cutting speed: Adjust the cutting speed based on the machining material and drill bit material to ensure cutting quality.

3.Make rational use of coolant: Choose coolant with an appropriate concentration, maintain the cleanliness of the coolant, and replace it in a timely manner.

4.Set machining parameters reasonably: According to the material and drill bit conditions, set cutting speed, feed rate, and start frequency, among other machining parameters, in a reasonable manner.

Methods to Improve Surface Roughness in Part Machining 2

Improving roughness through cutting parameter adjustments

The three elements of cutting conditions—cutting speed, feed rate, and depth of cut—directly cause tool damage. With the increase in cutting speed, the temperature at the tool tip rises, leading to mechanical, chemical, and thermal wear. A 20% increase in cutting speed results in a 50% reduction in tool life.

The relationship between feed conditions and tool wear occurs within a very narrow range. However, a large feed rate increases cutting temperature and leads to significant wear. Its impact on the tool is smaller compared to cutting speed. While the depth of cut has a smaller impact on the tool than cutting speed and feed rate, during micro-cutting, a hardened layer is produced in the machined material, also affecting tool life.

Users should choose the cutting speed based on factors such as the processed material, hardness, cutting conditions, material type, feed rate, and depth of cut. The selection of the most suitable processing conditions is based on these factors. Ideally, regular and stable wear reaching the tool’s lifespan is considered optimal.

However, in practical operations, the choice of tool life is related to tool wear, changes in the machined dimensions, surface quality, cutting noise, machining heat, etc. When determining processing conditions, research should be conducted based on the actual situation. For difficult-to-machine materials like stainless steel and heat-resistant alloys, coolant can be used, or blades with good rigidity can be selected.

The correct selection of these three elements is a major focus of the principles of metal cutting courses.

Cutting speed (linear speed, circumferential speed) V (meters per minute)

To choose the spindle speed per minute, it is necessary to first determine the appropriate cutting speed V. The selection of V depends on the tool material, workpiece material, and processing conditions.

刀具材質(zhì)

For carbide, a higher V can be chosen, generally above 100 meters per minute. Technical parameters are usually provided when purchasing blades, indicating the recommended cutting speeds for different materials. For high-speed steel, V can only be lower, generally not exceeding 70 meters per minute, often ranging from 20 to 30 meters per minute.

Workpiece material

For materials with high hardness, a lower V is chosen. For cast iron, a lower V is selected. When the tool material is carbide, a speed of 70 to 80 meters per minute can be chosen. For low carbon steel, V can be above 100 meters per minute, and for non-ferrous metals, a higher speed (100 to 200 meters per minute) can be chosen. For hardened steel and stainless steel, V should be chosen lower.

Processing conditions

For rough machining, a lower V is chosen, while for finishing, a higher V is chosen.

If the rigidity system of the machine tool, workpiece, and tool is poor, a lower V should be chosen.

If the numerical control program uses S as the spindle speed per minute, then S should be calculated based on the workpiece diameter and cutting speed V: S (spindle speed per minute) = V (cutting speed) * 1000 / (3.1416 * workpiece diameter).

If the numerical control program uses constant linear speed, then S can directly use the cutting speed V (meters per minute).

Feed Rate (Cutting Depth)

The feed rate, denoted as F, is primarily determined by the surface roughness requirements of the workpiece. In precision machining, where a high surface finish is required, a smaller feed rate is chosen, typically ranging from 0.06 to 0.12 mm per revolution of the spindle. For rough machining, a larger feed rate can be chosen.

The selection of the feed rate is mainly influenced by tool strength and is generally chosen to be 0.3 or higher. When the tool’s main clearance angle is large, resulting in lower tool strength, the feed rate should not be too high. Additionally, considerations should be given to the power of the machine tool, as well as the rigidity of both the workpiece and the tool.

Numerical control programs can use two units for the feed rate: mm/minute or mm/spindle revolution. The units used above are in mm/spindle revolution. If mm/minute is used, the conversion formula is as follows: Feed rate per minute = Feed rate per revolution * Spindle revolutions per minute.

Cutting Depth

In precision machining, the cutting depth is generally chosen to be below 0.5 (in terms of radius). For rough machining, the selection depends on the workpiece, tool, and machine tool conditions. For small lathes (with a maximum processing diameter below 400mm) turning annealed 45# steel, the radial cutting depth generally does not exceed 5mm.

It’s important to note that if the lathe’s spindle speed control uses ordinary frequency conversion speed regulation, when the spindle speed is very low (below 100-200 revolutions per minute), the motor output power will significantly decrease. In such cases, the cutting depth and feed rate can only be chosen to be very small.

Methods to Improve Surface Roughness in Part Machining 3

發(fā)表評論

電子郵件地址不會被公開。 必填項已用*標注

国产青青操骚货在线观看| 被公侵犯人妻少妇一区二区三区| 亚洲欧洲综合成人综合网| 一级特黄大片色欧美精品| 玖玖资源站无码专区| 亚洲av无一区二区三区综合| 欧美伦禁片在线播放| 色噜噜AV亚洲色一区二区| 欧美日本大白屁股大黑逼操逼视频| 啦啦啦视频在线手机播放| 日韩欧美一区二区三区在线视频| 尤物AV无码国产在线看| 精品国产99亚洲一区二区三区| 春宵福利导航91| 国产成人精品久久久成人| 使劲操我小穴视频| 国产高欧美性情一线在线| 9亚洲导航深夜福利亚洲| 大鸡巴日小美女明星的BB| 人妻含泪让粗大挺进| 色噜噜噜噜一区二区三区| 国产乱子伦视频一区二区三区| 黑丝美女被操哭边操边尿| 男的鸡巴插女的视频| 国产精品久久大屁股白浆| 国产一区二区三区在线观| 国产精品午夜小视频观看| 夫妻性生活在线免费视频| 国产 欧美 日韩 黄片| aaa啊啊啊黄片| 美女日比视频播放| 美女骚逼被操出白浆| 中日韩中文字幕无码一本| 成人久久久久久蜜桃免费| 波多野吉衣一区在线观看| 自拍偷拍视频颜射| 男插女逼啪啪啪软件| 美国大鸡巴操逼视频| 国产亚洲精品高清视频免费| 中文字幕 av一区二区| 国产天美传媒剧免费观看|