{"id":2783,"date":"2018-09-26T03:01:03","date_gmt":"2018-09-26T03:01:03","guid":{"rendered":"https:\/\/www.mcctcarbide.com\/?p=2783"},"modified":"2022-06-10T11:17:43","modified_gmt":"2022-06-10T03:17:43","slug":"7-ways-to-detect-the-positioning-accuracy-of-cnc-machine-tools","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/tr\/cnc-makine-takimlarinin-konumlandirma-dogrulugunu-algilamanin-7-yolu\/","title":{"rendered":"CNC Tak\u0131m Tezgahlar\u0131n\u0131n Konumland\u0131rma Hassasiyetini Tespit Etmenin 7 Yolu"},"content":{"rendered":"
\n

CNC Tak\u0131m Tezgahlar\u0131n\u0131n Konumland\u0131rma Hassasiyetini Tespit Etmenin 7 Yolu<\/h2>\n

CNC tak\u0131m tezgahlar\u0131n\u0131n konumland\u0131rma do\u011frulu\u011fu, say\u0131sal kontrol cihaz\u0131n\u0131n kontrol\u00fc alt\u0131nda tak\u0131m tezgah\u0131n\u0131n her bir koordinat ekseninin hareketi ile elde edilebilecek konumsal do\u011frulu\u011fu ifade eder. CNC tak\u0131m tezgahlar\u0131n\u0131n konumland\u0131rma do\u011frulu\u011fu, tak\u0131m tezgah\u0131n\u0131n hareket do\u011frulu\u011fu olarak anla\u015f\u0131labilir. S\u0131radan tak\u0131m tezgahlar\u0131 elle beslenir. Konumland\u0131rma do\u011frulu\u011fu esas olarak okuma hatas\u0131 taraf\u0131ndan belirlenir. CNC tak\u0131m tezgah\u0131n\u0131n hareketi, dijital program talimatlar\u0131 ile ger\u00e7ekle\u015ftirilir, bu nedenle konumland\u0131rma do\u011frulu\u011fu, say\u0131sal kontrol sistemi ve mekanik iletim hatas\u0131 taraf\u0131ndan belirlenir.<\/p>\n

CNC, Bilgisayar Say\u0131sal Kontroll\u00fc ifadesinin k\u0131saltmas\u0131d\u0131r. Kontrol sistemi, kontrol koduna veya di\u011fer sembolik talimatlara sahip bir program\u0131 mant\u0131ksal olarak i\u015fleme ve kodlanm\u0131\u015f dijital g\u00f6sterimleri kullanarak kodunu \u00e7\u00f6zme yetene\u011fine sahiptir. Aritmetik i\u015fleme yoluyla, tak\u0131m tezgah\u0131n\u0131n hareketini kontrol etmek i\u00e7in diferansiyel kontrol cihaz\u0131 taraf\u0131ndan \u00e7e\u015fitli kontrol sinyalleri verilir ve par\u00e7alar, \u00e7izimlerin gerektirdi\u011fi \u015fekil ve boyuta g\u00f6re otomatik olarak i\u015flenir.<\/p>\n

Tak\u0131m tezgah\u0131n\u0131n her hareketli par\u00e7as\u0131n\u0131n hareketi say\u0131sal kontrol cihaz\u0131n\u0131n kontrol\u00fc alt\u0131nda tamamlan\u0131r. Program komutunun kontrol\u00fc alt\u0131nda her hareketli par\u00e7an\u0131n elde edebilece\u011fi hassasiyet, do\u011frudan i\u015flenmi\u015f par\u00e7an\u0131n yapabilece\u011fi hassasiyeti yans\u0131t\u0131r. Bu nedenle, konumland\u0131rma do\u011frulu\u011fu \u00f6nemli bir testtir. \u0130\u00e7erik.<\/p>\n

1. Do\u011frusal hareket konumland\u0131rma do\u011frulu\u011fu alg\u0131lama<\/h2>\n

Do\u011frusal hareket konumland\u0131rma do\u011frulu\u011fu, genellikle tak\u0131m tezgahlar\u0131nda ve tezgahlarda y\u00fcks\u00fcz ko\u015fullar alt\u0131nda ger\u00e7ekle\u015ftirilir. Ulusal standartlara ve Uluslararas\u0131 Standardizasyon \u00d6rg\u00fct\u00fc'n\u00fcn (ISO standartlar\u0131) h\u00fck\u00fcmlerine g\u00f6re, CNC tak\u0131m tezgahlar\u0131n\u0131n tespiti lazer \u00f6l\u00e7\u00fcmlerine dayanmal\u0131d\u0131r. Bir lazer interferometrenin yoklu\u011funda, ortalama bir kullan\u0131c\u0131n\u0131n kar\u015f\u0131la\u015ft\u0131rmal\u0131 \u00f6l\u00e7\u00fcmler i\u00e7in optik okuma mikroskobu ile standart bir \u00f6l\u00e7ek kullanmas\u0131 da m\u00fcmk\u00fcnd\u00fcr. Ancak, \u00f6l\u00e7\u00fcm cihaz\u0131n\u0131n do\u011frulu\u011fu, \u00f6l\u00e7\u00fcm\u00fcn do\u011frulu\u011fundan bir ila iki seviye daha y\u00fcksek olmal\u0131d\u0131r.<\/p>\n

\u00c7oklu konumland\u0131rmadaki t\u00fcm hatalar\u0131 yans\u0131tmak i\u00e7in ISO standard\u0131, her konumland\u0131rma noktas\u0131n\u0131n ortalama de\u011feri ve da\u011f\u0131l\u0131m fark\u0131n\u0131 be\u015f \u00f6l\u00e7\u00fcm verisine ve da\u011f\u0131l\u0131m band\u0131 taraf\u0131ndan olu\u015fturulan da\u011f\u0131l\u0131m fark\u0131 band\u0131n\u0131 hesaplamas\u0131n\u0131 \u015fart ko\u015far.<\/p>\n

2, do\u011frusal hareket tekrar konumland\u0131rma do\u011frulu\u011fu alg\u0131lama<\/h2>\n

Test i\u00e7in kullan\u0131lan alet, konumland\u0131rma do\u011frulu\u011funu tespit etmek i\u00e7in kullan\u0131lanla ayn\u0131d\u0131r. Genel alg\u0131lama y\u00f6ntemi, her koordinat vuru\u015funun orta noktas\u0131na ve iki ucuna yak\u0131n herhangi bir \u00fc\u00e7 konumda \u00f6l\u00e7\u00fcm yapmakt\u0131r. Her pozisyon h\u0131zl\u0131 bir \u015fekilde hareket ettirilir ve konumland\u0131rma ayn\u0131 ko\u015fullar alt\u0131nda 7 kez tekrarlan\u0131r. Durma konumu de\u011feri \u00f6l\u00e7\u00fcl\u00fcr ve maksimum okuma fark\u0131 elde edilir. \u00dc\u00e7 konum aras\u0131ndaki en anlaml\u0131 fark\u0131n yar\u0131s\u0131 al\u0131narak, eksen hareket do\u011frulu\u011funun kararl\u0131l\u0131\u011f\u0131n\u0131 yans\u0131tan en temel indeks olan koordinatlar\u0131n tekrarlanan konumland\u0131rma do\u011frulu\u011fu olarak pozitif ve negatif i\u015faretler eklenir.<\/p>\n

3, do\u011frusal hareket k\u00f6kenli d\u00f6n\u00fc\u015f do\u011frulu\u011fu alg\u0131lama<\/h2>\n

Orijine d\u00f6n\u00fc\u015f hassasiyeti, esasen, koordinat ekseni \u00fczerindeki \u00f6zel bir noktan\u0131n tekrar konumland\u0131rma do\u011frulu\u011fudur, bu nedenle alg\u0131lama y\u00f6ntemi, tekrar konumland\u0131rma do\u011frulu\u011fu ile tamamen ayn\u0131d\u0131r.<\/p>\n

4. Do\u011frusal hareketin ters hata tespiti<\/h2>\n

Kay\u0131p miktar\u0131 olarak da adland\u0131r\u0131lan do\u011frusal hareketin ters hatas\u0131, koordinat ekseni besleme zincirindeki s\u00fcr\u00fcc\u00fc konumunun (servo motor, servo motor ve kademeli motor gibi) ters \u00f6l\u00fc b\u00f6lgesini ve her bir mekanik hareket iletim \u00e7iftini i\u00e7erir. bo\u015fluk ve elastik deformasyon gibi hatalar\u0131n yans\u0131mas\u0131. Hata ne kadar b\u00fcy\u00fck olursa, konumland\u0131rma do\u011frulu\u011fu ve tekrar konumland\u0131rma do\u011frulu\u011fu o kadar d\u00fc\u015f\u00fck olur.<\/p>\n

Ters hatan\u0131n tespit y\u00f6ntemi, \u00f6l\u00e7\u00fclen koordinat ekseninin vuru\u015funda bir mesafe ileri veya geri hareket ettirmek ve durma konumunu referans olarak kullanmak ve ard\u0131ndan bir mesafeyi hareket ettirmek i\u00e7in ayn\u0131 y\u00f6nde belirli bir hareket komutu de\u011feri vermektir. . Ard\u0131ndan ayn\u0131 mesafeyi z\u0131t y\u00f6nde \u00e7al\u0131\u015ft\u0131r\u0131n ve durma konumu ile referans konumu aras\u0131ndaki fark\u0131 \u00f6l\u00e7\u00fcn. \u00d6l\u00e7\u00fcm, vuru\u015fun orta noktas\u0131na ve her iki ucuna yak\u0131n \u00fc\u00e7 noktada bir\u00e7ok kez (genellikle yedi kez) ger\u00e7ekle\u015ftirilmi\u015ftir ve her konumdaki ortalama de\u011fer elde edilmi\u015ftir ve elde edilen ortalama de\u011ferler aras\u0131ndaki maksimum de\u011fer, ters hata de\u011feridir. .<\/p>\n

5. D\u00f6ner tablan\u0131n konumland\u0131rma do\u011frulu\u011fu tespiti<\/h2>\n

\u00d6l\u00e7me ara\u00e7lar\u0131, belirli ko\u015fullara g\u00f6re se\u00e7ilebilen standart taret, a\u00e7\u0131l\u0131 polihedron, dairesel \u0131zgara ve kolimat\u00f6r (kolimat\u00f6r) vb. i\u00e7erir. \u00d6l\u00e7\u00fcm y\u00f6ntemi, masay\u0131 ileri (veya geri) bir a\u00e7\u0131ya ve durmaya, kilitlemeye ve konuma getirmektir. Bu konumu referans olarak kullan\u0131n, ard\u0131ndan tablay\u0131 h\u0131zla ayn\u0131 y\u00f6ne \u00e7evirin ve her 30 kilitte bir \u00f6l\u00e7\u00fcn. \u0130leri d\u00f6n\u00fc\u015f ve geri d\u00f6n\u00fc\u015f\u00fcn her biri bir hafta boyunca \u00f6l\u00e7\u00fcl\u00fcr ve her konumland\u0131rma konumunun ger\u00e7ek d\u00f6n\u00fc\u015f a\u00e7\u0131s\u0131 ile teorik de\u011fer (komut de\u011feri) aras\u0131ndaki fark\u0131n maksimum de\u011feri b\u00f6lme hatas\u0131d\u0131r. tablo, her 30'da bir hedef konum olmal\u0131d\u0131r, her hedef konumun pozitif ve negatif y\u00f6nlerden 7 kez h\u0131zl\u0131 bir \u015fekilde bulunmas\u0131 i\u00e7in alan ve hedef konum aras\u0131ndaki farka fiilen ula\u015f\u0131l\u0131r ve ard\u0131ndan GB10931-89'a g\u00f6re belirtilen y\u00f6ntem "Dijital Kontrol Makinelerinin Konum Do\u011frulu\u011funu De\u011ferlendirme Y\u00f6ntemi"nde, ortalama konum sapmas\u0131 ve standart sapmay\u0131, t\u00fcm ortalama konum sapmalar\u0131n\u0131n maksimum de\u011feri ile standart sapma aras\u0131ndaki fark\u0131 ve t\u00fcm ortalama konum sapmalar\u0131n\u0131n ve t\u00fcm ortalama konum sapmalar\u0131n\u0131n toplam\u0131n\u0131 hesaplar. standart sapma. CNC d\u00f6ner tablan\u0131n konumland\u0131rma do\u011frulu\u011fu hatas\u0131d\u0131r.<\/p>\n

Kuru tip transformat\u00f6r\u00fcn fiili kullan\u0131m gereksinimleri g\u00f6z \u00f6n\u00fcne al\u0131nd\u0131\u011f\u0131nda, genellikle 0, 90, 180, 270 vb. gibi birka\u00e7 e\u015fit a\u00e7\u0131l\u0131 noktay\u0131 \u00f6l\u00e7mek esast\u0131r ve bu noktalar\u0131n do\u011frulu\u011funun bir seviye iyile\u015ftirilmesi gerekmektedir. di\u011fer a\u00e7\u0131sal konumlarla kar\u015f\u0131la\u015ft\u0131r\u0131ld\u0131\u011f\u0131nda.<\/p>\n

6. D\u00f6ner tablan\u0131n tekrarlanan indeksleme do\u011frulu\u011fu tespiti<\/h2>\n

\u00d6l\u00e7\u00fcm y\u00f6ntemi d\u00f6ner tablan\u0131n bir haftas\u0131nda \u00fc\u00e7 yerde \u00fc\u00e7 kez tekrarlan\u0131r ve alg\u0131lama s\u0131ras\u0131yla ileri ve geri y\u00f6nlerde yap\u0131l\u0131r. T\u00fcm okumalar\u0131n de\u011ferleri ile kar\u015f\u0131l\u0131k gelen pozisyonun teorik de\u011feri aras\u0131ndaki fark\u0131n maksimum de\u011feri. Bir CNC d\u00f6ner tabla ise, hedef konum olarak her 30'da bir \u00f6l\u00e7\u00fcm noktas\u0131 al\u0131n ve her bir hedef konumu i\u00e7in s\u0131ras\u0131yla pozitif ve negatif y\u00f6nlerden be\u015f h\u0131zl\u0131 konumland\u0131rma ger\u00e7ekle\u015ftirin ve ger\u00e7ek var\u0131\u015f konumu ile hedef konum aras\u0131ndaki fark\u0131 \u00f6l\u00e7\u00fcn. Yani, konum sapmas\u0131 ve daha sonra, say\u0131sal kontrol\u00fcn tekrarlanan indeksleme hassasiyeti olan her bir \u00f6l\u00e7\u00fcm noktas\u0131n\u0131n standart sapmas\u0131n\u0131n maksimum de\u011ferinin alt\u0131 kat\u0131 olan GB10931-89'da belirtilen y\u00f6nteme g\u00f6re standart sapmay\u0131 hesaplay\u0131n. d\u00f6ner tabla.<\/p>\n

7. D\u00f6ner tablan\u0131n orijin d\u00f6n\u00fc\u015f do\u011frulu\u011fu tespiti<\/h2>\n

\u00d6l\u00e7\u00fcm y\u00f6ntemi, 7 rastgele konumdan ba\u015flang\u0131\u00e7 noktas\u0131na d\u00f6n\u00fc\u015f\u00fc ger\u00e7ekle\u015ftirmek, durma konumunu \u00f6l\u00e7mek ve ba\u015flang\u0131\u00e7 noktas\u0131na d\u00f6n\u00fc\u015f do\u011frulu\u011fu olarak okunan maksimum fark\u0131 kullanmakt\u0131r.<\/p>\n

Mevcut konumland\u0131rma do\u011frulu\u011funun tespitinin h\u0131zl\u0131 ve konumland\u0131rma ko\u015fulu alt\u0131nda \u00f6l\u00e7\u00fcld\u00fc\u011f\u00fc belirtilmelidir. Besleme sistemi \u00e7ok iyi olmayan baz\u0131 CNC tak\u0131m tezgahlar\u0131 i\u00e7in, de\u011fi\u015fen besleme h\u0131zlar\u0131yla konumland\u0131rma yap\u0131ld\u0131\u011f\u0131nda farkl\u0131 konumland\u0131rma do\u011fruluk de\u011ferleri elde edilecektir. Ayr\u0131ca, konumland\u0131rma do\u011frulu\u011funun \u00f6l\u00e7\u00fcm sonucu, ortam s\u0131cakl\u0131\u011f\u0131 ve koordinat ekseninin \u00e7al\u0131\u015fma durumu ile ilgilidir. \u015eu anda, say\u0131sal kontroll\u00fc tak\u0131m tezgahlar\u0131n\u0131n \u00e7o\u011fu, yar\u0131 kapal\u0131 bir d\u00f6ng\u00fc sistemi benimsemektedir ve konum tespit bile\u015fenleri \u00e7o\u011funlukla, 1 m'lik bir strokta 0,01 ila 0,02 mm'lik bir hata \u00fcreten tahrik motoruna monte edilmi\u015ftir. Garip de\u011fil. Bu, termal uzamadan kaynaklanan bir hatad\u0131r ve baz\u0131 makineler, etkiyi azaltmak i\u00e7in bir \u00f6n gerdirme (\u00f6n s\u0131kma) y\u00f6ntemi kullan\u0131r.<\/p>\n

The repeating positioning accuracy of each coordinate axis reflects the most basic accuracy index of the shaft, which reflects the stability of the motion accuracy of the axle, and it cannot be assumed that the machine tool with poor precision can be stably used for production. At present, due to the increasing number of functions of the numerical control system, system errors such as pitch accumulation error and backlash error can be compensated for the motion accuracy of each sitting injector. Only the random error cannot be paid, and the repeat positioning accuracy is repeated. It reflects the absolute random error of the feed drive mechanism. It can’t be corrected by the CNC system compensation. When it is found to be out of tolerance, only the fine adjustment of the feed drive chain is performed. Therefore, if the machine tool is allowed to be selected, it is better to choose a machine with high repeatability.<\/p><\/div>\n

<\/p>","protected":false},"excerpt":{"rendered":"

7 Ways to Detect the Positioning Accuracy of CNC Machine Tools The positioning accuracy of CNC machine tools refers to the positional accuracy that can be achieved by the movement of each coordinate axis of the machine tool under the control of the numerical control device. The positioning accuracy of CNC machine tools can be…<\/p>","protected":false},"author":1,"featured_media":2787,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[92],"tags":[],"class_list":["post-2783","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-cutting-tools-weekly"],"jetpack_featured_media_url":"https:\/\/www.meetyoucarbide.com\/wp-content\/uploads\/2019\/05\/141d2f_812cc2c1f60145259ac5a59d92679858mv2-1.png","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/2783","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/comments?post=2783"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/2783\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/media\/2787"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/media?parent=2783"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/categories?post=2783"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/tags?post=2783"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}