{"id":18529,"date":"2017-10-18T07:53:54","date_gmt":"2017-10-18T07:53:54","guid":{"rendered":"https:\/\/www.mcctcarbide.com\/development-and-principles-of-nuclear-magnetic-resonance\/"},"modified":"2021-10-11T06:07:30","modified_gmt":"2021-10-11T06:07:30","slug":"development-and-principles-of-nuclear-magnetic-resonance","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/tr\/nukleer-manyetik-rezonansin-gelistirme-ve-ilkeleri\/","title":{"rendered":"N\u00fckleer Manyetik Rezonans\u0131n Geli\u015fimi ve \u0130lkeleri"},"content":{"rendered":"
<\/p>\n

\u0130lk olarak, k\u0131sa bir tarihin geli\u015fmesi \u0130lk a\u015fama: 1945-1951, n\u00fckleer manyetik rezonans\u0131n icad\u0131 ve d\u00f6nemin teorik ve deneysel temelini att\u0131: Bloch (Stanford \u00dcniversitesi, su proton sinyalinde g\u00f6zlemlendi) ve Purcell (Harvard \u00dcniversitesi, ikinci a\u015fama: geli\u015fme d\u00f6nemi i\u00e7in 1951-1960, kimyagerler ve biyologlar taraf\u0131ndan rol\u00fcn\u00fc tan\u0131d\u0131, bir\u00e7ok \u00f6nemli sorunu \u00e7\u00f6zmek i\u00e7in. 1953 ilk 30MHz n\u00fckleer manyetik rezonans spektrometresinde ortaya \u00e7\u0131kt\u0131; 1958 ve erken 60MHz, 100MHz enstr\u00fcman ortaya \u00e7\u0131kmas\u0131. 1950'lerin ortalar\u0131nda, 1H-NMR, 19F-NMR ve 31P-NMR geli\u015ftirildi. \u00dc\u00e7\u00fcnc\u00fc a\u015fama: 60 ila 70 y\u0131l, NMR teknolojisi s\u0131\u00e7rama s\u00fcresi. Hassasiyet ve \u00e7\u00f6z\u00fcn\u00fcrl\u00fc\u011f\u00fc art\u0131rmak i\u00e7in Pulse Fourier d\u00f6n\u00fc\u015f\u00fcm teknolojisi, 13C n\u00fckleer rutin olarak \u00f6l\u00e7\u00fclebilir; \u00e7ift frekans ve \u00e7ok frekansl\u0131 rezonans teknolojisi; D\u00f6rd\u00fcnc\u00fc a\u015fama: 1970'lerin sonlar\u0131nda teori ve teknoloji geli\u015fimi olgunla\u015fm\u0131\u015ft\u0131r. 1,200, 300, 500 MHz ve 600 MHz s\u00fcper iletken NMR spektrometreleri; 2, uygulamada \u00e7e\u015fitli darbe serilerinin uygulanmas\u0131 \u00f6nemli hale getirildi geli\u015ftirme; 3, 2D-NMR ortaya \u00e7\u0131kt\u0131; 4, \u00e7ok \u00e7ekirdekli ara\u015ft\u0131rma, t\u00fcm manyetik \u00e7ekirdeklere uygulanabilir; 5, \u201cn\u00fckleer manyetik rezonans g\u00f6r\u00fcnt\u00fcleme teknolojisi\u201d ve di\u011fer yeni dal disiplinleri olmu\u015ftur.\u0130kinci, ana ama\u00e7: 1. Yap\u0131n\u0131n belirlenmesi ve onaylanmas\u0131 ve bazen konfig\u00fcrasyonu, konformasyonu belirleyebilir2. Bile\u015fik safl\u0131k kontrol\u00fc, tiner hassasiyeti, ka\u011f\u0131t kromatografisi y\u00fcksek3. Ana sinyal gibi kar\u0131\u015f\u0131m analizi, ayr\u0131lmadan kar\u0131\u015f\u0131m\u0131n oran\u0131n\u0131 belirleyebilir. Proton de\u011fi\u015fimi, tek bir ba\u011f\u0131n d\u00f6n\u00fc\u015f\u00fc, halkan\u0131n d\u00f6n\u00fc\u015f\u00fcm\u00fc ve varsay\u0131m h\u0131z\u0131nda di\u011fer kimyasal de\u011fi\u015fiklikler 1. T\u00fcm elementlerin izotoplar\u0131nda, \u00e7ekirde\u011fin yakla\u015f\u0131k yar\u0131s\u0131nda d\u00f6nme hareketi vard\u0131r. Bu spin \u00e7ekirdekleri n\u00fckleer manyetik rezonans\u0131n nesnesidir. Spin Kuantum: Bir tamsay\u0131, bir yar\u0131m tamsay\u0131 veya bir s\u0131f\u0131r olabilen \u00e7ekirde\u011fin s\u0131kma hareketini tan\u0131mlayan kuantum say\u0131lar\u0131n\u0131n say\u0131s\u0131. Organik bile\u015fik kompozisyon elementlerinde C, H, O, N en \u00f6nemli elementtir. \u0130zotoplar\u0131nda 12C, 16O manyetik de\u011fildir ve bu nedenle n\u00fckleer manyetik rezonansa girmez. 1H do\u011fal bollu\u011fu b\u00fcy\u00fck, g\u00fc\u00e7l\u00fc manyetik, belirlenmesi kolay, bu nedenle NMR \u00e7al\u0131\u015fmas\u0131 esas olarak proton i\u00e7indi. 13C bollu\u011fu k\u00fc\u00e7\u00fckt\u00fcr, sadece 12C 1.1% ve sinyal hassasiyeti sadece 1\/64 elde etmek i\u00e7in bir proton. Yani 1H'nin sadece 1\/6000'inin toplam duyarl\u0131l\u0131\u011f\u0131n\u0131 belirlemek daha zordur. Ancak son 30 y\u0131lda, n\u00fckleer manyetik rezonans cihaz\u0131 b\u00fcy\u00fck \u00f6l\u00e7\u00fcde geli\u015ftirildi, k\u0131sa s\u00fcrede 13C spektrumunda \u00f6l\u00e7\u00fclebilir ve daha fazla bilgi verebilir, NMR'nin ana arac\u0131 haline gelmi\u015ftir. 1H, 19F, 31P k\u00fcresel, b\u00fcy\u00fck, g\u00fc\u00e7l\u00fc manyetik ve n\u00fckleer y\u00fck da\u011f\u0131l\u0131m\u0131n\u0131n bollu\u011fu, belirlenmesi en kolay 2. N\u00fckleer manyetik rezonans fenomenleri ecess \u00d6nlem: Belirli bir manyetik momentle d\u00f6nme Harici manyetik alan H0'\u0131n etkisi alt\u0131nda, bu \u00e7ekirdek kinematik hareket i\u00e7in a\u00e7\u0131 olu\u015fturacakt\u0131r: H0 (d\u0131\u015f manyetik alan g\u00fcc\u00fc) ile orant\u0131l\u0131 olan \u00f6nceki kinematik h\u0131zd\u0131r. d\u0131\u015f manyetik alan y\u00f6nelimli spin n\u00fckleer: d\u0131\u015f manyetik alan yok, spin manyetik y\u00f6nelim kaotik. Manyetik \u00e7ekirdek (2I + 1) y\u00f6nelimli harici manyetik alanda (H0) bulunur. D\u0131\u015f manyetik alandaki manyetik \u00e7ekirde\u011fin d\u00f6n\u00fc\u015f\u00fc, yer\u00e7ekimi alan\u0131ndaki jiroskopun \u00f6nc\u00fcl\u00fc\u011f\u00fcne (pronasyon, sal\u0131n\u0131m) benzer olabilir.\u2462 n\u00fckleer manyetik rezonans ko\u015fullar\u0131 Manyetik rezonans manyetik alan manyetik \u00e7ekirdeklere, harici manyetik alana sahip olmal\u0131d\u0131r ve RF manyetik alan\u0131. RF manyetik alan\u0131n\u0131n frekans\u0131, spin \u00e7ekirde\u011finin \u00f6nceki frekans\u0131na e\u015fittir ve rezonans, d\u00fc\u015f\u00fck enerji durumundan y\u00fcksek enerji durumuna kadar ger\u00e7ekle\u015fir.\u2463 n\u00fckleer manyetik rezonans fenomeni: Harici manyetik alan H0'\u0131n dikey y\u00f6n\u00fcnde, \u00f6n \u00e7ekirde\u011fe d\u00f6nen bir manyetik alan (H1) uygulan\u0131r. H1'in d\u00f6nme frekans\u0131 \u00e7ekirde\u011fin d\u00f6nme \u00f6ncesi frekans\u0131na e\u015fitse, \u00e7ekilme \u00e7ekirde\u011fi H1'den enerji emebilir ve d\u00fc\u015f\u00fck enerji durumundan y\u00fcksek enerji durumuna N\u00fckleer manyetik rezonansa ge\u00e7i\u015f yapabilir. Doygunluk ve rahatlama D\u00fc\u015f\u00fck enerjili n\u00fckleer, y\u00fcksek enerjili n\u00fckleerden sadece 0.001% daha y\u00fcksektir. Bu nedenle, d\u00fc\u015f\u00fck enerji durum \u00e7ekirde\u011fi her zaman y\u00fcksek enerjili n\u00fckleerden daha fazlad\u0131r, \u00e7\u00fcnk\u00fc b\u00f6yle k\u00fc\u00e7\u00fck bir fazlal\u0131k, elektromanyetik dalgalar\u0131n emilimini g\u00f6zlemleyebilir. Elektromanyetik dalgalar\u0131n n\u00fckleer s\u00fcrekli emilmesi durumunda, orijinal d\u00fc\u015f\u00fck enerji durumu yava\u015f yava\u015f azal\u0131r, emilim sinyalinin yo\u011funlu\u011fu zay\u0131flar ve sonu\u00e7ta tamamen kaybolur, bu fenomene doygunluk denir. Doygunluk meydana geldi\u011finde, iki spin durumundaki \u00e7ekirdek say\u0131s\u0131 tamamen ayn\u0131d\u0131r. Harici manyetik alanda, d\u00fc\u015f\u00fck enerjili \u00e7ekirdekler genellikle y\u00fcksek enerjili durumdan daha n\u00fckleerdir, elektromanyetik dalga enerjisini emer ve \u00e7ekirde\u011fin y\u00fcksek enerjili durumuna g\u00f6\u00e7 eder, \u00e7e\u015fitli enerji mekanizmalar\u0131 ile serbest b\u0131rak\u0131l\u0131r ve orijinal d\u00fc\u015f\u00fck enerji durumuna d\u00f6nme, bu s\u00fcrece gev\u015feme denir. Kalkan etkisi - kimyasal kayma \u2460 rezonans\u0131n ideal durumu \u0130zole, \u00e7\u0131plak \u00e7ekirdekler i\u00e7in, \u0394E = (h \/ 2\u03c0) \u03b3 \u00b7 H; Belirli bir H0 alt\u0131nda, bir \u00e7ekirde\u011fin sadece bir \u0394E\u0394E = E d\u0131\u015f\u0131nda = h\u03bd T, 1H emilim frekans\u0131 100 MHz, 13C emilim frekans\u0131 25.2 MHz\u2461 ger\u00e7ek \u00e7ekirdek: koruyucu fenomen Elektronun d\u0131\u015f\u0131nda n\u00fckleer (izole edilmemi\u015f, a\u00e7\u0131\u011fa \u00e7\u0131kmam\u0131\u015f) Bile\u015fiklerde: kimyasal ba\u011flar, hidrojen ba\u011flar\u0131 gibi atomlar aras\u0131 ba\u011flanma (rol) farkl\u0131d\u0131r Elektrostatik etkile\u015fimler, molek\u00fcller aras\u0131 kuvvetlerG\u00f6r\u00fcnt\u00fc: H0 = 2.3500 T'de, kalkan\u0131n d\u0131\u015f elektronlar\u0131 nedeniyle, n\u00fckleer pozisyonda, ger\u00e7ek manyetik alan 2.3500 TR'den biraz daha k\u00fc\u00e7\u00fckt\u00fcr. 100 MHz'den biraz daha y\u00fcksektir. 1H, 0 ila 10 ve 13C, 0 ila 250'dir Hidrojen \u00e7ekirdeklerinin d\u0131\u015f\u0131nda elektronlar vard\u0131r ve manyetik alan\u0131n manyetik alan \u00e7izgilerini iterler. \u00c7ekirdek i\u00e7in, \u00e7evredeki elektronlar ekranl\u0131 (Ekranlama) etkiye sahiptir. \u00c7ekirdek etraf\u0131ndaki elektron bulutunun yo\u011funlu\u011fu ne kadar b\u00fcy\u00fck olursa, ekranlama etkisi o kadar b\u00fcy\u00fck olur, onu rezonant hale getirmek i\u00e7in manyetik alan g\u00fcc\u00fcnde kar\u015f\u0131l\u0131k gelen art\u0131\u015f. \u00c7ekirdek etraf\u0131ndaki elektron bulut yo\u011funlu\u011fu ba\u011fl\u0131 gruplardan etkilenir, bu nedenle farkl\u0131 kimyasal ortamlar\u0131n \u00e7ekirdekleri farkl\u0131 ekranlama etkilerinden muzdariptir, n\u00fckleer manyetik rezonans sinyalleri farkl\u0131 yerlerde de g\u00f6r\u00fcl\u00fcr. \u2462 Cihaz 60MHz veya 100MHz enstr\u00fcman, organik bile\u015fik protonun elektromanyetik dalga frekans\u0131 yakla\u015f\u0131k 1000Hz veya 1700Hz'dir. Yap\u0131y\u0131 belirlerken, do\u011fru rezonans frekans\u0131n\u0131 belirleme ihtiyac\u0131, genellikle g\u00f6reli frekans\u0131 belirlemek i\u00e7in genellikle standart olarak uygun bile\u015fik ile birka\u00e7 Hz do\u011frulu\u011fu gerektirir. Standart bile\u015fi\u011fin rezonans frekans\u0131 ile bir protonun rezonans frekans\u0131 aras\u0131ndaki farka kimyasal kayma denir. H NMR spektroskopisi bilgileri Sinyal say\u0131s\u0131: molek\u00fclde ka\u00e7 farkl\u0131 proton t\u00fcr\u00fc bulunur Sinyalin konumu: her protonun elektronik ortam\u0131, kimyasal kayma Sinyalin yo\u011funlu\u011fu: her protonun say\u0131s\u0131 veya say\u0131s\u0131Split durumu: ka\u00e7 Farkl\u0131 protonlar mevcuttur: Organik bile\u015fiklerin yayg\u0131n t\u00fcrlerinin kimyasal kaymas\u0131yla ind\u00fcklenen etki - konjugat etkisi Konjugasyon etkisi, \u03c0 elektronlar\u0131n anizotropik etkisinin yer de\u011fi\u015ftirmesi nedeniyle proton korumas\u0131 ile zay\u0131f veya artm\u0131\u015ft\u0131r.H'nin kimyasal elektronlara g\u00f6re kimyasal kaymas\u0131n\u0131 a\u00e7\u0131klamak zordur ve elektronegatiflik H anahtar etkisini ROH, 0.5-5'te RNH2, 4-7'de ArOH, de\u011fi\u015fim aral\u0131\u011f\u0131, bir\u00e7ok fakt\u00f6r\u00fcn etkisini a\u00e7\u0131klamak zordur; hidrojen ba\u011f\u0131yla s\u0131cakl\u0131k, \u00e7\u00f6z\u00fcc\u00fc, konsantrasyon \u00f6nemli \u00f6l\u00e7\u00fcde de\u011fi\u015fir, hidrojen ba\u011flar\u0131 ile ilgili yap\u0131 ve de\u011fi\u015fiklikleri anlayabilirsiniz. \u2464 \u00e7\u00f6z\u00fcc\u00fc etkisi Benzen DMF ile bir kompleks olu\u015fturur. Benzen halkas\u0131n\u0131n elektron bulutu, DMF'nin pozitif taraf\u0131n\u0131 \u00e7ekerek negatif taraf\u0131 reddeder. a metil koruyucu b\u00f6lgede, rezonans y\u00fcksek alana hareket eder; ve \u03b2 metil maskeleme b\u00f6lgesindedir, rezonans emilimi d\u00fc\u015f\u00fck alana hareket eder ve sonu\u00e7, iki emilim tepe konumunun de\u011fi\u015ftirilmesidir.
\nKaynak: Meeyou Carbide<\/p>\n

<\/body><\/html><\/div>\n

<\/p>","protected":false},"excerpt":{"rendered":"

First, the development of a brief historyThe first stage: 1945 to 1951, the invention of nuclear magnetic resonance and lay the theoretical and experimental basis of the period: Bloch (Stanford University, observed in the water proton signal) and Purcell (Harvard University, observed in the paraffin proton signal) obtained Nobel bonus.The second stage: 1951 to 1960…<\/p>","protected":false},"author":1,"featured_media":1601,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[79,1],"tags":[],"class_list":["post-18529","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-materials-weekly","category-uncategorized"],"jetpack_featured_media_url":"https:\/\/www.meetyoucarbide.com\/wp-content\/uploads\/2019\/05\/f875f9_bb1c35716b08473c98191e3de498a58fmv2.png","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/18529","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/comments?post=18529"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/18529\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/media\/1601"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/media?parent=18529"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/categories?post=18529"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/tags?post=18529"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}