欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

In a broader sense, cutting tools encompass both blades and abrasive tools. The majority of cutting tools are intended for machine use, although there are also manual versions. Due to the fact that cutting tools used in mechanical manufacturing are primarily employed for cutting metal materials, the term “cutting tools” is generally understood to refer to metal cutting tools,while tools used for cutting wood are referred to as woodworking tools.

Introduction to Carbide Cutting Tools from 5 aspects 1

Development History of Carbide Cutting Tools

The rapid development of cutting tools came in the late 18th century, paralleling the growth of machinery such as the steam engine. In 1783, René in France was the first to create a milling cutter. In 1792, Maudslay in the UK produced tap and die sets. The earliest documented reference to the invention of the twist drill dates back to 1822, but it wasn’t until 1864 that it became commercially produced. Tools at that time were made from integral high-carbon tool steel, with permissible cutting speeds of about 5 meters per minute.

In 1868, Mushet in the UK created alloy tool steel containing tungsten. In 1898, Taylor and White in the US invented high-speed steel. In 1923, Schr?ter in Germany invented hard alloys.

The use of alloy tool steel increased cutting speeds to around 8 meters per minute, high-speed steel raised it more than twice that, and with the use of hard alloys, it increased by more than twice again. The surface quality and dimensional accuracy of workpieces from cutting operations also significantly improved.

Due to the relatively high cost of high-speed steel and hard alloys, welded and mechanically clamped structures were introduced in tooling. Between 1949 and 1950, the US began to use indexable inserts on lathe tools, which soon extended to milling cutters and other tools. In 1938, Degussa in Germany obtained a patent for ceramic cutting tools. In 1972, General Electric in the US produced polycrystalline synthetic diamond and polycrystalline cubic boron nitride inserts. These non-metallic tool materials enabled tools to cut at even higher speeds.

In 1969, Sandvik in Sweden obtained a patent for producing cemented carbide inserts with titanium carbide coatings using chemical vapor deposition. In 1972, Bondhus and Laguiole in the US developed physical vapor deposition, coating cemented carbide or high-speed steel tool surfaces with titanium carbide or titanium nitride hard layers. Surface coating methods combine the high strength and toughness of the base material with the high hardness and wear resistance of the surface layer, resulting in better cutting performance for these composite materials.

Introduction to Carbide Cutting Tools from 5 aspects 2

Categorizing Carbide Cutting Tools by Application

Cutting tools can be classified into five categories based on the form of the workpiece’s machined surface. These include tools for processing various external surfaces, such as turning tools, planing tools, milling cutters, external grooving tools, and files; tools for hole machining, such as drills, reamers, boring tools, countersinks, and internal grooving tools; thread processing tools, including taps, dies, automatic opening and closing thread chasers, thread turning tools, and thread milling cutters; gear processing tools, including hob cutters, gear shapers, gear shaving cutters, and bevel gear processing tools; and cutting-off tools, including inserted-tooth circular saw blades, band saws, hacksaws, cut-off turning tools, and saw-milling cutters, among others. Additionally, there are combination tools.

Based on the cutting motion and corresponding blade shape, cutting tools can be further classified into three categories. General-purpose tools, such as turning tools, planing tools, milling cutters (excluding form turning tools, form planing tools, and form milling cutters), boring tools, drills, reamers, and saws; form tools, where the blade shape of these tools matches or closely approximates the profile of the workpiece, including form turning tools, form planing tools, form milling cutters, broaches, tapered reamers, and various thread processing tools; gear generation tools used to machine gear teeth or similar workpieces using gear generating methods, such as hob cutters, gear shapers, gear shaving cutters, and bevel gear planing tools.

 

Categorizing Carbide Cutting Tools by Form

Tools with handles typically come in three types: rectangular handle, cylindrical handle, and taper handle. Turning tools, planing tools, and others generally have a rectangular handle. Taper handles are designed to withstand axial thrust and transmit torque through frictional forces. Cylindrical handles are typically used for smaller tools like twist drills and end mills, and the torque is transmitted through friction generated during clamping. The handle of many tools is made from low-alloy steel, while the working part is bonded with high-speed steel, combining the two parts.

The working part of a cutting tool is the section responsible for generating and handling chips. It includes the cutting edge, structures that break or curl the chips, spaces for chip evacuation or storage, channels for cutting fluid, and other structural elements. For some tools, the working part is solely the cutting section, such as turning tools, planing tools, boring tools, and milling cutters. For others, the working part includes both the cutting section and the calibration section, such as drills, reamers, countersinks, internal grooving tools, and taps. The cutting section’s role is to remove chips using the cutting edge, while the calibration section’s role is to finish the machined surface and guide the tool.

cutting tool

Principles of Selecting Cutting Tool Materials

When selecting cutting tools, various factors need to be considered, such as the workpiece material, tool material, and machining characteristics (rough or finish machining). The choice must be made based on the specific circumstances.

High-speed steel remains the most widely used tool material in modern times due to its high bending strength, impact toughness, and good machinability. Carbide follows as the second most popular choice.

Polycrystalline cubic boron nitride is suitable for cutting high-hardness quenched steel, hardened cast iron, and similar materials. Polycrystalline diamond is suitable for cutting non-ferrous metals, alloys, plastics, and fiberglass. Carbon tool steel and alloy tool steel are now only used for tools like files, taps, and dies.

 

Carbide Cutting Tool Grades

Cutting tool carbide grades are categorized into six types based on their application fields: P, M, K, N, S, and H, each used for specific purposes:

P: Cutting long chips in materials like steel, cast steel, and malleable cast iron.

M: General alloy machining, including alloy steel, alloy cast iron, stainless steel, and manganese steel.

K: Cutting short chips in materials like gray cast iron.

N: Processing non-ferrous metals and non-metallic materials.

S: Machining heat-resistant and high-quality alloy materials.

H: Cutting hard materials such as quenched steel and cold-hardened cast iron.

Each category has subgroup numbers, such as 01, 10, 20, 30, and 40 for P, M, K, and 01, 10, 20, 30 for N, S, H. Within each subgroup, as the number increases, the hardness decreases, while the bending strength increases.

The basic composition of P-grade alloys consists of TiC and WC as the base, with Co (or Ni) as the binder. M to H grades all have WC as the base and Co as the binder, sometimes with the addition of TaC and NbC.

Tungsten-cobalt (WC-Co) alloys are the most widely used carbide materials, consisting mainly of tungsten carbide (WC) and cobalt (3% to 30%). When used for cutting tools, the Co content ranges from 3% to 13%, and the average WC grain size is 1 to 5 μm. In the case of tooling, the Co content can reach up to 30%, with an average WC grain size of 10 μm.

WC-Co carbide can be used for cutting cast iron, non-ferrous metals, and non-metallic materials. It can also be used for drawing dies, cold heading dies, and measuring and cutting tools. The carbide can be categorized into low-cobalt, medium-cobalt, and high-cobalt alloys based on cobalt content, and into microcrystalline, fine crystalline, medium crystalline, and coarse crystalline alloys based on WC grain size.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

日韩高清毛片在线观看| 伊人久久丁香色婷婷啪啪| 操鸡巴奶子在线观看| 午夜场射精嗯嗯啊啊视频| 鸡巴插进女人的逼里| 亚洲中文字幕在线无码一区二区| 国产精品午夜小视频观看| 久久综合色伊人九色91| 欧美亚洲综合久久夜夜嗨| 91偷自产一区二区三区蜜臀| 99精品欧美一区二区三区喷胶| 最新的亚洲欧美中文字幕| av日韩在线观看一区二区三区| 91video国产一区| 亚洲卡通动漫第127页| 九九视频免费在线观看| 国产精品视频一区二区三区分享| 亚洲综合一区国产精品| 国产成人亚洲欧美久久| 人人妻人人澡精品99| 国产精品无码av在线一区| —级v免费大片欧美| 好嗨哟直播看片在线观看| 精华欧美一区二区久久久| 精品无码国产一区二区三区麻豆| 性色av少妇一区二区三区多人| 裸体午夜一级视频| 爱爱视频小抽插动漫| 欧美亚洲综合久久夜夜嗨| 国产精品自在自线。| 日韩av一区二区高清不卡| 国产乱理伦片在线观看夜| 国精品午夜福利视频导航| 国产精品操大屁股老淑女| 国产高清乱码女大生AV| av黄色资源在线观看| 亚洲综合青青草原在线| 久久久久精品无码专区喝奶| 一级特黄大片色欧美精品| 免费黄片视频星空| 潮中文字幕在线观看|