{"id":22626,"date":"2024-05-24T17:41:12","date_gmt":"2024-05-24T09:41:12","guid":{"rendered":"https:\/\/www.meetyoucarbide.com\/?p=22626"},"modified":"2024-06-11T10:14:36","modified_gmt":"2024-06-11T02:14:36","slug":"addressissues-and-tackle-them-boring-tool","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/pl\/addressissues-and-tackle-them-boring-tool\/","title":{"rendered":"Jak rozwi\u0105zywa\u0107 r\u00f3\u017cne problemy i radzi\u0107 sobie z nimi przy precyzyjnym wytaczaniu otwor\u00f3w wewn\u0119trznych?"},"content":{"rendered":"
the resultant holes that machined by HSS tools at low speed gennerally have a lower surface roughness. Additionally, the small cuttings happens and results in longer machining times and lower efficiency, making HSS tools generally suitable only for finishing operations. To eliminate taper in the inner hole, switching to medium-speed cutting can be attempted, but this often leads to built-up edge formation on the tool’s rake face, increasing surface roughness and failing to meet the required surface finish. If a HSS tool is used at high speeds for precision boring, the poor heat and wear resistance of HSS causes rapid tool wear and insufficient tool strength, leading to tool deflection and difficulty in controlling dimensions. On the other hand, using a carbide tool at high speeds can result in poor tool rigidity and significant vibration, leading to a wavy surface on the inner hole, thereby affecting precision.<\/p>\n
<\/p>\n
<\/p>\n
To achieve good precision in inner hole machining, it’s essential to reasonably select the type and grade of carbide tool, appropriate geometry, and suitable cutting parameters.<\/p>\n
Wybierz narz\u0119dzie do wytaczania z w\u0119glika wolframu i kobaltu, klasa YG8 (odpowiednik klasy ISO K20-K30). To narz\u0119dzie charakteryzuje si\u0119 wysok\u0105 wytrzyma\u0142o\u015bci\u0105, dobr\u0105 odporno\u015bci\u0105 na uderzenia i wibracje, a tak\u017ce nadaje si\u0119 do toczenia z nisk\u0105 pr\u0119dko\u015bci\u0105, co czyni je idealnym do precyzyjnego wytaczania.<\/p>\n
Dodatni k\u0105t natarcia (\u03bbs) dla ostro\u015bci;
\nK\u0105t g\u0142\u00f3wnej kraw\u0119dzi skrawaj\u0105cej (Kr) wynosz\u0105cy 93-96 stopni w celu zmniejszenia si\u0142y promieniowej;
\nK\u0105t natarcia (\u03b30) i k\u0105t przy\u0142o\u017cenia (\u03b10), oba wynosz\u0105ce 6 stopni, poprawiaj\u0105 ostro\u015b\u0107 i zmniejszaj\u0105 deformacj\u0119 ci\u0119cia;
\nK\u0105t wt\u00f3rnej kraw\u0119dzi skrawaj\u0105cej (Kr) wynosz\u0105cy 6 stopni w celu zminimalizowania chropowato\u015bci powierzchni.<\/p>\n
<\/p>\n
K\u0105t natarcia to k\u0105t mi\u0119dzy g\u0142\u00f3wn\u0105 kraw\u0119dzi\u0105 skrawaj\u0105c\u0105 a p\u0142aszczyzn\u0105 podstawy. Dodatni k\u0105t natarcia sprawia, \u017ce narz\u0119dzie do wytaczania jest ostre, co zmniejsza op\u00f3r skrawania ze wzgl\u0119du na ma\u0142y dodatek na obr\u00f3bk\u0119 podczas wyka\u0144czania.
\nThe main cutting edge angle is the angle between the main cutting edge’s projection on the base plane and the feed direction. It directly affects the radial force. A smaller angle increases tool tip strength, while a larger angle reduces radial force. Hence, an angle of 93-96 degrees is chosen to reduce radial force and facilitate cutting of stepped surfaces in the inner hole.
\nThe rake angle, typically 5-20 degrees, improves boring tool sharpness and reduces cutting force. However, increasing the rake angle decreases cutting edge strength. During finishing, a larger rake angle is chosen to ensure sharpness. The relief angle, between 3-12 degrees, reduces friction between the tool’s relief face and the workpiece.
\nThe secondary cutting edge angle, 6-8 degrees (6 degrees in this case), reduces surface roughness by minimizing the angle between the secondary cutting edge’s projection and the feed direction.<\/p>\n
Na podstawie charakterystyki narz\u0119dzia testy wykaza\u0142y, \u017ce pr\u0119dko\u015b\u0107 skrawania w przypadku precyzyjnego rozwiercania otworu wewn\u0119trznego ze stali w\u0119glowej wynosi
\n\u03a645 wynosi oko\u0142o 25 m\/min (pr\u0119dko\u015b\u0107 przedmiotu obrabianego oko\u0142o 180 obr.\/min), przy g\u0142\u0119boko\u015bci ci\u0119cia a wynosz\u0105cej 0,05\u20130,10 mm i szybko\u015bci posuwu f wynosz\u0105cej 0,2 mm\/obr.<\/p>\n
<\/p>\n
Using a chip-breaking tool for inner hole precision boring ensures that the small finishing allowance doesn’t affect the surface roughness;<\/p>\n
Wi\u0119kszy k\u0105t g\u0142\u00f3wnej kraw\u0119dzi skrawaj\u0105cej zmniejsza si\u0142\u0119 skrawania promieniowego i wibracje;<\/p>\n
Wi\u0119ksza \u015brednica uchwytu narz\u0119dzia do wytaczania zapewnia wystarczaj\u0105c\u0105 sztywno\u015b\u0107, zapobiegaj\u0105c drganiom i falisto\u015bci powierzchni powodowanej przez niewystarczaj\u0105c\u0105 sztywno\u015b\u0107 narz\u0119dzia.<\/p>\n
<\/p>\n
Before precision boring, ensure a machining allowance of 0.08-0.12mm and a surface roughness around Ra3-2. If the allowance is too small, finishing won’t remove rough machining marks; if too large, cutting resistance increases, reducing hole precision.
\nNarz\u0119dzie nadaje si\u0119 wy\u0142\u0105cznie do obr\u00f3bki wyka\u0144czaj\u0105cej, nie zgrubnej.
\nPodczas obr\u00f3bki nale\u017cy unika\u0107 uderzania narz\u0119dzia w powierzchnie stopniowane. Chocia\u017c w\u0119glik jest twardy i odporny na zu\u017cycie, jest kruchy i nieodporny na uderzenia. Dlatego nale\u017cy pracowa\u0107 ostro\u017cnie, prze\u0142\u0105czaj\u0105c si\u0119 na posuw r\u0119czny 2-3 mm przed \u017c\u0105dan\u0105 g\u0142\u0119boko\u015bci\u0105 otworu, aby uzyska\u0107 wymagan\u0105 g\u0142\u0119boko\u015b\u0107 dok\u0142adnie.<\/p><\/div>\n
<\/p>","protected":false},"excerpt":{"rendered":"
Which is best for precision boring inner holes? Carbide or HSS? We opt for low-speed cutting using a carbide offset boring tool. Carbide tools were chosen for its excellent heat and wear resistance, which compensates for the shortcomings of HSS tools. At low cutting speeds, the carbide tool maintains durability and sharpness, preventing vibration, deflection,…<\/p>","protected":false},"author":2,"featured_media":22629,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[92],"tags":[],"class_list":["post-22626","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-cutting-tools-weekly"],"jetpack_featured_media_url":"https:\/\/www.meetyoucarbide.com\/wp-content\/uploads\/2024\/05\/u33777039383198669575fm253fmtautoapp138fJPEG.webp.jpg","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/pl\/wp-json\/wp\/v2\/posts\/22626","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/pl\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/pl\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/pl\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/pl\/wp-json\/wp\/v2\/comments?post=22626"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/pl\/wp-json\/wp\/v2\/posts\/22626\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/pl\/wp-json\/wp\/v2\/media\/22629"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/pl\/wp-json\/wp\/v2\/media?parent=22626"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/pl\/wp-json\/wp\/v2\/categories?post=22626"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/pl\/wp-json\/wp\/v2\/tags?post=22626"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}