欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

What milling cutter should be used for processing stainless steel? This is a question encountered by many people. Some customers encounter blade breakage and work hardening issues when processing stainless steel. This article, based on the 22 years of industry experience of Dahai CNC Machinery and relevant professional materials, aims to solve this problem for you.

How to Achieve Safe and Stable Processing Stainless Steel ? 2

Characteristics of Stainless Steel Milling

Compared to the machinability of 45# steel, austenitic stainless steel is only 0.4, ferritic stainless steel is only 0.48, and martensitic stainless steel is only 0.55. Among them, the machinability of a mixture of austenite and carbide is even worse.

Severe work hardening of processing stainless steel

Stainless steel undergoes severe work hardening, especially the mixture of austenite and ferrite, where the hardness of the hardened layer is 1.4 to 2.2 times higher than that of the base material, with a strength of R=1470~1960MPa. This type of stainless steel has high plasticity and strengthening coefficient. Moreover, austenite is unstable and easily transforms into martensite under the action of cutting forces.

High cutting forces

Stainless steel has high plasticity, especially austenitic stainless steel, with a elongation rate 2.5 times that of 45# steel. During milling, there is significant plastic deformation, increasing cutting forces, severe work hardening, high thermal strength, and difficulty in chip curling and breakage.

High cutting temperatures

Stainless steel has significant plastic deformation and increased friction, with a relatively low thermal conductivity. Therefore, under the same conditions, the milling temperature of stainless steel is about 200 degrees higher than that of 45# steel.

Difficult chip breaking

When processing stainless steel, chip adhesion and built-up edge formation are common issues. Stainless steel has high plasticity and toughness, making chip breaking during milling difficult. Under high temperature and pressure, the tool is prone to adhesive wear and built-up edge formation.

Tool wear

When machining stainless steel, stainless steel milling cutters should be used because the TiC hard points in stainless steel easily cause severe tool wear. Under high-speed, high-temperature, and high-pressure conditions, cutting and tooling easily experience adhesive wear, diffusion, and crescent-shaped wear.

 

What milling cutter to use for processing stainless steel?

To process stainless steel, hard alloy materials should be used, selecting tungsten-cobalt alloys with fine or ultra-fine grains containing TaC or NbC. Examples include YG6x, YG813, YW4, YD15, etc. When milling stainless steel, extreme pressure emulsion or sulfurized cutting oil should be used. For hard alloy stainless steel milling cutters, the milling speed should be between 40~60m/min to avoid cutting into the hardened layer, accelerating tool wear. The feed rate should be greater than 0.1mm. Some companies may use high-hardness tools for stainless steel machining, but for common stainless steel materials like 304 and 202, hard alloy tools are sufficient. When machining 316 stainless steel or quenched and tempered stainless steel, in addition to using high-hardness tools, the tool edges should be sharp, preferably using stainless steel-specific tools from reputable brands.

 

Meetyou Solution

Meetyou’s SUS milling cutter series dedicated to processing stainless steel is of great significance to manufacturers of large batches of stainless steel components. This tool can achieve efficient, low-cost, and safe machining, meeting the requirements of safe and stable machining for flexible production lines.

processing stainless steel

The?coolant channel can effectively cool the cutting area, thereby achieving a longer tool life. The tool has specially designed chip grooves, a cutting edge angle of 11°, and a helix angle of 48°, enabling swift cutting with lower cutting forces, thereby reducing the risk during stainless steel cutting, especially for highly ductile austenitic stainless steel, greatly improving the safety of the cutting process. The double-thick core design reduces the risk of cutting vibration for stainless steel machining, with the maximum core thickness reaching 70%, ensuring excellent rigidity of such tools, making them perform stably when cutting stainless steel.

The design with unequal pitch significantly reduces the risk of vibration, and the polished coating makes chip removal easier, greatly reducing the risk of iron chip entanglement during stainless steel processing.

Processing Stainless steel Case

Workpiece: Pump Impeller

Material: 1.4435 Austenitic Stainless Steel

Processing Parameters: Vc = 70 m/min, fz = 0.04 mm, ap = 11mm, ae = 12 mm Metal Removal Rate Q = 40 cm3/min

Conclusion: The tool life reaches 289 mins before normal wear.

How to Achieve Safe and Stable Processing Stainless Steel ? 3

Stainless Steel Machining Recommendations

1.The cutting depth should be greater than the thickness of the surface hardened layer (milling should be performed in the climb milling direction rather than conventional milling).

2.Try to limit and reduce the generation and accumulation of cutting heat (coolant must be sprayed in the correct position and be sufficient, and using larger chip cross-sectional areas or average chip thicknesses can carry away as much cutting heat as possible through the chips).

3.The average chip thickness is very important. During milling, pay attention to the correct tool position, ensure that the cutting-out point has at least 10% overrun, and the average chip thickness should be greater than the width of the cutting edge, avoiding zero feed values and using helical interpolation instead of drilling, etc.

4.Try to use larger-sized inserts to improve insert heat capacity and lifespan.

5.When small cutting depths are unavoidable, appropriately increase the cutting line speed to ensure a certain amount of cutting heat and prevent chip lumps from appearing (pay attention to the application of theories and methods such as average chip thickness and speed factor adjustment optimization parameters during side milling).

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

国产 欧美 日韩 黄片| 欧美日韩亚洲人人夜夜澡| 精品国产99亚洲一区二区三区| 最新的亚洲欧美中文字幕| 日本人妻与家公的伦理片| 黑人大鸡巴日小逼| 插女人下面高潮视频| 日韩有码一区二区三区在线观看| 91久久高清国语自产拍| 9亚洲导航深夜福利亚洲| 国产污污污在线观看视频| 女教师色色天天免费播放| 亚洲狠狠插狠狠搞狠狠摸| 国产色哟哟精选在线播放| 冷色系的发色有哪些颜色| 三男狂插小穴穴视频| 黑人与日本人妻中文字幕| 中文字幕在线观看第二页| 国产高清在线观看一区二区三区| 国语自产免费精品视频在| 大波美女被插的好爽| 欧美性爱撅臀插入啪啪啪| 欧美精品第一区二区三区| 久久一区二区三区精华液介绍| 久久精品国产自清天天线| 伊人久久丁香色婷婷啪啪| 一区亚洲免费二区| 久久精品伦一区二区三区| 男生狂操女生污视频| 夜夜嗨av少妇一二三区| 国产精品白浆一区二区三区| 亚洲福利小视频在线观看| 日韩有码视频在线| 欧美一级特黄大片在线看| 操我骚逼抽插视频| 精品日韩欧美精品日韩| 男人天堂av在线免费看| 日韩美女一区二区三区香蕉视频| 少妇被黑人入侵在线观看| 新视觉亚洲三区二区一区理伦| 妓女综合网在线观看|