欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The main methods of metal cutting for thread machining include turning, milling, and tapping. This article introduces the most common thread turning techniques used in production, with the hope of providing useful insights for everyone.

4 Key Fundamental Knowledge on Thread Machining 2

I. Key Fundamental Knowledge on Thread Machining

Terminology Definitions

4 Key Fundamental Knowledge on Thread Machining 3

 

 

4 Key Fundamental Knowledge on Thread Machining 4

① Root② Flank③ Crest

4 Key Fundamental Knowledge on Thread Machining 5

What is the Helix Angle?

  • The helix angle depends on the diameter and pitch of the thread.
  • Adjust the flank clearance angle of the insert by changing the shim.
  • The rake angle is denoted as γ. The most common rake angle is 1°, corresponding to the standard shim in the tool holder.

4 Key Fundamental Knowledge on Thread Machining 6

Cutting Forces During Thread Insertion and Exit

  • The highest axial cutting force in the thread machining process occurs during the tool’s entry and exit from the workpiece.
  • Excessive cutting parameters may cause the insert to move if it is not securely clamped.

4 Key Fundamental Knowledge on Thread Machining 7

Function of the Rake Angle

The rake angle can be set by using a shim underneath the insert in the tool holder. You can refer to the charts in the tool catalog to choose which shim to use. All tool holders come equipped with a standard shim that sets the rake angle to 1°.

4 Key Fundamental Knowledge on Thread Machining 8

Selecting Shims Based on the Rake Angle

The rake angle is influenced by the workpiece diameter and thread pitch. As shown in the diagram below, for a workpiece with a diameter of 40mm and a pitch of 6mm, the required shim must have a 3° rake angle (the standard shim cannot be used).

4 Key Fundamental Knowledge on Thread Machining 9Marking of Threading Inserts and Shims

 

4 Key Fundamental Knowledge on Thread Machining 10

Thread Forms and Their Applications

 

4 Key Fundamental Knowledge on Thread Machining 11

II. Types of Threading Inserts and Clamping Solutions

Multi-Tooth Inserts

4 Key Fundamental Knowledge on Thread Machining 12

Advantages:

  • Reduces the number of tooling passes.
  • Extremely high productivity.

Disadvantages:

  • Requires stable clamping.
  • Requires sufficient tool retraction space after thread machining.

Full-tooth cutter

thread

Advantages:

  • Better control of thread shape.
  • Fewer burrs.

Disadvantages:

  • Each blade can only cut one pitch.

V-tooth cutter.

4 Key Fundamental Knowledge on Thread Machining 13

Advantages:

  • Flexibility, as the same type of blade can be used for machining several pitches. Disadvantages:
  • May result in burr formation, requiring deburring.

 

Ⅲ.three different types of feed methods

The feed method plays an important role in the thread machining process. It affects cutting control, blade wear, thread quality, and tool life.

Improved lateral feed

This feed method is commonly used in most CNC machine tools through a looping program.

  • Chips are easier to form and guide compared to traditional turning types;
  • Axial cutting forces reduce the risk of vibration;
  • The chips are thicker but only contact one side of the blade;
  • Heat transfer to the blade is reduced;
  • Preferred for most thread machining processes.

4 Key Fundamental Knowledge on Thread Machining 14

Radial feed

This is the most commonly used method and also one of the earliest methods that non-CNC lathes could employ.

  • Produces hard “V”-shaped chips.
  • Uniform blade wear.
  • Blade holder exposed to high temperatures, limiting the depth of cut.
  • Suitable for machining fine-pitch threads.
  • May result in vibration and poor chip control when machining coarse-pitch threads.
  • Preferred for machining hardened materials.

4 Key Fundamental Knowledge on Thread Machining 15

Alternating feed of thread machining

  • Recommended for large pitches.
  • Enables uniform blade wear and maximizes tool life when machining threads with extremely large pitches.
  • Chips are guided in two directions, making control difficult.

thread machining

Ⅳ.Methods for Improving Machining Results

4 Key Fundamental Knowledge on Thread Machining 16

Left: Step-down cutting depth (Constant chip area) Achieves a constant chip area, which is the most common method used in CNC programs.

  • The first pass cuts the deepest.
  • Follow the recommended values ??on the feed table in the sample.
  • Balances chip area more evenly.
  • The final pass actually measures around 0.07mm.

Right: Constant cutting depth Regardless of the number of passes, the depth of cut remains the same each time.

  • Requires higher demands on the blade.
  • Ensures optimal chip control.
  • Not applicable for pitches greater than TP1.5mm or 16TP.

Utilizing additional allowance for thread crest finishing: Before machining threads, there’s no need to turn the blank to an exact diameter; utilize additional allowances/material for finishing the thread crest. For finishing crest inserts, leave 0.03~0.07mm of material from the preceding turning process to shape the crest correctly.

 

?? ???

???? ???? ????. ?? ???? * ? ???? ????

青青视频在线人视频在线| 性色av一区二区三区天美传媒四| 欧美日韩精品视频在线第一区| 日本韩国国产精品一区| 中文字幕精品字幕一区二区三区| 国产欧美日本韩国一区二区| 日韩午夜精品中文字幕| 男女操逼视频嫩嫩| 熟妇女人妻丰满中文字幕| 内射白嫩少妇超碰| 外国处女BB视频| 啊灬啊别停灬用力啊男男在线观看| 久久久久精品无码专区喝奶| 亚洲欧美日韩中文v在线| 亚洲大尺度无码无码专线一区| 国产精品免费第一区二区| 精品人妻少妇一区二区三区不卡| 欧美日韩一区二区成人在线| 影音先锋亚洲中文综合网| 国产高清一区二区三区四区色| 国产亚洲一区二区手机在线观看| 欧美伦禁片在线播放| 日本不卡免费一区二区视频| 青娱乐极品视觉导航| 国产妇女乱一性一交| 大鸡鸡插我骚逼视频| 国产高清免费一级a久久| 狂插美女大屁股在线观看| 91秦先生全集在线观看| 99久久九九爱精品国产| 大鸡巴猛插小穴视频| 成人高清在线播放一区二区三区| 永久性日韩无码视频| 中日韩中文字幕无码一本| 性一交一乱一乱一区二区| 制服丝袜国产在线第一页| 老头鸡巴操老太骚逼| 自拍偷拍视频颜射| 从后面进入嗯啊视频| 韩国三级a视频哪里看| 精品无码一区二区三区无码|