欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Low-pressure hot isostatic pressing (HIP) is a new sintering process developed in Western developed countries in the 1980s, which combines vacuum sintering and hot isostatic pressing in a single device to complete the process in one step. We have utilized low-pressure hot isostatic pressing technology to manufacture recycled mining carbide, which effectively improves the mechanical and physical properties of the alloys, resulting in a virtually pore-free microstructure and excellent rock drilling performance on-site.

Hot Isostatic Pressing

Experimental Method

Recycled WC powder with a Fisher particle size of 3.00~10.00 μm and normal WC powder with a Fisher particle size of 10.00~18.00 μm were mixed with Co powder or Ni powder with a loose packing density of 0.5~0.7g/cm3 to prepare mixtures of grades YJ1, YJ2, N309, etc. The mixtures were shaped, degummed, and then sintered in a domestically produced horizontal vacuum furnace and a low-pressure hot isostatic pressing furnace manufactured by a German specialized equipment company. The low-pressure hot isostatic pressing process is as follows: loading → vacuum pumping → heating → maintaining sintering temperature → charging argon and pressurizing → maintaining pressure and temperature → cooling and depressurizing → unloading. Electron microscopy was used for metallographic analysis, and the linear shrinkage and shrinkage rate of the samples during the sintering process were measured by the low-pressure hot isostatic pressing sintering furnace to analyze the densification process. The test alloys were made into D43×22 straight horseshoe bits for calibration tests in mining operations.

Experimental Results

Comparison of Properties

Between Low-Pressure Hot Isostatic Pressing Treatment of Recycled Material and Vacuum Sintering Treatment of Normal Material. The two types of tungsten carbide powders, recycled and normal, were processed using the same manufacturing process, undergoing vacuum sintering and low-pressure hot isostatic pressing treatment, respectively. The results are listed in Table 1.

What's Low-Pressure Hot Isostatic Pressing of Recycled Mining Carbide? 2

As can be seen from Table 1, the porosity of the alloy treated with low-pressure hot isostatic pressing using recycled WC powder is even lower than that of the normal alloy, and its performance has been significantly improved, with an increase in the transverse rupture strength value; moreover, the elimination of type B pores ranging from 10 to 25 μm indicates the intrinsic relationship between the reduction in porosity and the increase in transverse rupture strength, while also confirming the capability of low-pressure hot isostatic pressing sintering to eliminate pores in recycled alloys.

Low-Pressure Hot Isostatic Pressing Alloy Linear Shrinkage Test

The linear shrinkage and shrinkage rate of the samples during the sintering process in the low-pressure hot isostatic pressing furnace were measured as shown in the attached figure. The alloy undergoes two stages: vacuum sintering and hot isostatic pressing. The macroscopic pores are eliminated during the vacuum sintering stage, and the microscopic pores are eliminated during the hot isostatic pressing stage to achieve the final densification level.

Comparison of On-site Rock Drilling Effects

The two types of tungsten carbide?powders, recycled and normal, were made into alloys of grades YJ1, YJ2, N309, etc., and calibration tests were conducted at the Taolin Lead-Zinc Mine. The results are listed in Table 2.

What's Low-Pressure Hot Isostatic Pressing of Recycled Mining Carbide? 3

The rock drilling calibration indicates that high-quality mining carbide?can be produced from recycled WC powder through low-pressure hot isostatic pressing treatment, and their performance is comparable to that of mining carbide?made from normal tungsten carbide.

What's Low-Pressure Hot Isostatic Pressing of Recycled Mining Carbide? 4

Result Analysis

Process Characteristics of Low-Pressure Hot Isostatic Pressing for Eliminating Pores in Recycled carbide

The densification of carbide?primarily occurs during sintering, where the plastic flow of the binder phase and the rearrangement of WC grains are driven by surface tension. However, under atmospheric or vacuum sintering, a certain amount of porosity always remains after shrinkage densification is complete; this is because when pores are sealed, the stress inside the pores reaches equilibrium with the surface tension of the pores. Additionally, due to the mixed composition of recycled materials and the presence of more harmful impurities, large pores and voids are easily formed during vacuum sintering, leading to issues such as low alloy density, low fracture strength, significant hardness variations, and severe contamination of the alloy. Applying a certain pressure can promote further flow of the binder phase and rearrangement of WC grains, thereby greatly reducing or even completely eliminating these pores or voids.

Study on the Densification Mechanism of Low-Pressure Hot Isostatic Pressing

The change curve of the linear shrinkage rate of recycled carbide?samples during low-pressure hot isostatic pressing sintering is shown in the attached figure. There are three peaks on the shrinkage rate curve: Peak A appears at a sintering temperature of 1200°C, which is solid-phase sintering. Due to the low yield point of the binder phase, plastic flow occurs under a small external force. The flow of the binder metal changes the contact situation between powder particles, causing the carbide?particles to move and come closer together. Peak B appears during the liquid-phase sintering process at 1340°C, where WC particle rearrangement, solution precipitation, and skeleton formation result in significant shrinkage of the sintered body, and macroscopic pores are eliminated during the vacuum sintering process of low-pressure hot isostatic pressing. Peak C appears at the beginning of the pressurization stage, where the rise in pressure eliminates the micro-pores in the product. However, with the extension of the pressure maintenance time, no new shrinkage peak appears in the product.

 

??

(1) The physical and mechanical properties of the recycled alloy treated by low-pressure hot isostatic pressing are superior to those of alloys manufactured by conventional processes, with a significant reduction in porosity and the elimination of type B pores.

(2) The recycled alloy treated by low-pressure hot isostatic pressing does not fall short of normal alloys in on-site rock drilling tests, and its wear resistance is even improved.

(3) The mechanism by which low-pressure hot isostatic pressing improves the performance of the alloy is mainly the elimination of large-sized pores and the reduction in porosity.

?? ???

???? ???? ????. ?? ???? * ? ???? ????

成人男女做爰免费视频网| 亚洲精品自拍偷拍| 国产精品免费久久久久久| 一区二中文字幕在线看国产一区| 女人被男人躁爽色欲国产| 久久精品男人的天堂av| 大鸡巴操大屁股美女视频| 99爱国产精品免费视频| 女人逼逼出水视频| 国产色哟哟精选在线播放| 青青河边草直播免费观看| 60秒动态视频在线观看| 爱爰哦好粗好猛操b视频| 大鸡吧天天草黑逼| 西瓜在线看免费观看视频| 美国毛片亚洲社区成人看| 裸体美女被操的啊啊直叫| 国产亂倫近親相姦| 日韩av大片一区二区三区| 啊啊好想被大鸡巴操视频| 嗯嗯好硬好大啊老公| 麻豆国产欧美一区二区三区r| 国产乱理伦片在线观看夜| 神马我不卡手机在线观看| 91kaobi视频在线| 欧美性一区二区三区五区| 久久噜噜噜久久熟女精品| 午夜国产精品午夜福利网| 99久久国产综合精品女| 天天爽夜夜爽夜夜爽一区| 日本一区二区高清免费不卡| 黑人妖大鸡吧操逼| 女人的骚逼免费视频| 国产区高清在线一区二区三区| 美性中文网中文字幕91| 欧美精品视频在线| 日本成人精品一区二区三区| 欧美猛男一区二区三区快播| 免费黄色 操逼视频| 亚洲欧美一区二区三区孕妇| 在线精品亚洲观看不卡欧|