欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Carbide heat treatment is a critical process that plays a crucial role in enhancing the performance of hard alloys. By carefully designing and adjusting heat treatment parameters, the microstructure and mechanical properties of carbides can be controlled, enabling them to adapt to different working environments and application requirements.The use of?carbides in the mold industry is increasing day by day, so exploring and studying the heat treatment of carbides is of practical significance.

The Impact of Heat Treatment on the Strength of Carbides

Due to the different solubility of WC in Co at different temperatures, the possibility of achieving precipitation hardening of the binder phase through quenching at the solubilization temperature and subsequent aging is provided. Quenching can suppress the precipitation of WC and the isostructural transformation of Co (Co hexagonal close-packed, Co face-centered cubic). Literature reports indicate that the strength of an alloy with 40% cobalt can increase by about 10% after quenching, but the strength of an alloy with 10% cobalt decreases after quenching. Annealing can also cause a decrease in the strength of the alloy, as shown in Table 1 and Figure 1.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 2

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 3

The Impact of Heat Treatment on the Hardness of Carbides

During the aging process of WC-Co alloy, the precipitation of Co3WCX and the formation of a dense microstructure occur, resulting in an increase in the hardness of the alloy. However, when the subsequent transformation leads to the precipitation of Co3W, the hardness of the alloy decreases. Experimental data is illustrated in Figure 5 and Figure 6.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 4

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 5

While the presence of Co3WCX after heat treatment slightly increases the hardness of the alloy, considering the extended heat treatment time and the decrease in flexural strength, it is believed that the precipitation of the Co3WCX phase for dispersion strengthening of the binder phase is not an effective method for developing new grades. Alternative approaches should be explored. Aging treatment involves maintaining the alloy at a specific temperature for a certain duration, allowing it to reach a thermodynamic equilibrium state. This can lead to the precipitation of phases that enhance hardness in the alloy, such as the Co3WCX phase. Aging treatment has a positive impact on improving the hardness and strength of carbides.

Applying different heat treatments for various grades

To enhance alloy performance, specific heat treatment processes tailored to different grades of Carbides are essential for achieving optimal properties. We have consolidated typical results of heat treatment for Carbides in Table 2 for your reference.

Typical results of heat treatment for carbides

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 6

結(jié)論

Firstly, heat treatment has a significant impact on the crystal structure and grain size of carbides. By controlling the heating and cooling rates, the growth and arrangement of crystals can be adjusted, affecting the hardness and strength of alloy. For example, an appropriate quenching process can create a dense lattice structure, increasing the hardness of alloy.

Secondly, heat treatment also influences the wear resistance of alloy. By adjusting the elemental composition and distribution of phases in the alloy, the surface performance of hard alloys can be improved, making them more resistant to wear and corrosion. This is crucial for the performance of hard alloys in cutting, grinding, and other high-wear applications.

Additionally, heat treatment can also adjust the toughness and impact resistance of hard alloys. Through proper aging treatment, the binder phase in the alloy can be optimized, enhancing its bending and impact resistance. This is of great significance for the application of hard alloys in high-load and impact environments.

Overall, by precisely controlling the heat treatment process, comprehensive improvements in the performance of hard alloys can be achieved, making them better suited to the requirements of the industrial and manufacturing sectors.

コメントを殘す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

国产精选三级在线观看| 呦交小u女国产精品99| 亚洲福利小视频在线观看| 国产欧美亚洲一区二区三| 日韩欧美一级特黄大片欧| 在线无码一区二区三区不卡| 精品的极品美女一区二区三区| 欧美亚洲另类天天综合网| 免费的黄片很很操| 国产一区二区三区 韩国女主播| 韩国年轻的母亲在线观看| 快日我啊好爽日我逼| 国产三级精品久久久久| 国产亚洲一区二区手机在线观看| 91污在线观看一区二区三区| 国产欧美日韩一区二区在线观看| 免费观看的黄视频一级国产| 久久精品国产亚洲av伦理| 一区亚洲免费二区| 欧美在线A片一区二区三区| 搬开女人下面使劲插视频| 精品麻豆国产免费一区二区三区| 被下药强奷到舒服的视频| 日韩美女黄大片在线观看| 国产精品粉嫩懂色av| 黄色av成年人在线观看| 男男大鸡巴操小屁眼视频| 欧美 亚洲 日本 国产| 留学生美女被大黑屌猛戳| 国产精品高潮久久久久a| 上萬網友分享a级国产乱| 国产精品熟女一区二区三区久久夜| 国产在线中文字幕一区二区三区| 亚洲人成在线不卡网| 久久精品伦一区二区三区| 亚洲AV无码一区二区三区天堂古| 久久久久有精品国产麻豆| 亚洲一区二区三成人精品| 国产欧美日韩一区二区在线观看| 日韩欧美一级特黄大片欧| 国产精品免费99久久久|