欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The structural shape of a part shall not only meet the design performance requirements, but also meet the processing process requirements. Therefore, it is necessary to understand the common process structure on parts.

Process structure of casting parts (including drawing of transition line)

The process structure of casting parts includes mold inclination, casting fillet, casting wall thickness, etc.

1. Formwork lifting slope

   When casting parts, in order to facilitate mold taking, a certain slope is often designed along the mold starting direction on the casting wall, that is, the mold starting slope. For the structure with small inclination, it may not be drawn on the graph, but the value of mold lifting inclination must be explained in words in the technical requirements. As shown in Figure 1.

What is the optimal structure of mechanical part drawing 1

Figure 1

2. Cast fillet

When casting parts, in order to prevent sand falling from the casting sand mold and avoid cracks or shrinkage cavities during casting cooling (as shown in Fig. 2), the intersection of casting surfaces shall be made into fillet transition, as shown in Fig. 3. Generally, the cast fillet shall be drawn in the drawing. When the radius of each fillet is the same or close, the radius value can be uniformly noted in the technical requirements, such as cast fillet R3 ~ R5, etc.

What is the optimal structure of mechanical part drawing 2

Figure.2

What is the optimal structure of mechanical part drawing 3

Figure.3

Because there are casting fillets at the intersection of casting surfaces, the intersection line of two surfaces becomes less obvious. However, on the part drawing, the theoretical intersection line of the surface must still be drawn, but it is required to leave a blank at both ends or one end of the intersection line, which is usually called the transition line. The drawing method of transition line is basically the same as that of intersection line without fillet. The differences between them are shown in Figure 4.

What is the optimal structure of mechanical part drawing 4

Figure.4

3. Casting wall thickness

  In order to avoid cracks or shrinkage cavities caused by internal stress during casting cooling, the wall thickness of the casting shall be as uniform as possible, and the transition between different wall thicknesses shall also be uniform, as shown in Figure 5.

What is the optimal structure of mechanical part drawing 5

Figure.5

Cutting process structure of metal parts

  The cutting process structure of metal parts includes chamfering and rounding, tool return groove or grinding wheel over travel groove, reasonable structure of drilling, boss and pit, etc.

1. Chamfering and rounding

  In order to facilitate assembly, chamfer is often machined at the shaft end or orifice, as shown in Fig. 6 (a). In order to avoid cracks on the stepped shaft or hole due to stress concentration, fillets are often machined at the turning point of the shoulder, as shown in Fig. 6 (b). The type and size of chamfering and rounding of parts shall be specified in the national standard.

What is the optimal structure of mechanical part drawing 6

Figure.6

2. Undercut or grinding wheel over travel groove

  In order to easily withdraw the tool during cutting and ensure the machining quality, the tool withdrawal groove or grinding wheel over travel groove is often machined at the shoulder of the machining surface, as shown in Fig. 6 (c). The structure and size of the over travel groove of the grinding wheel are specified in the national standard.

3. Bosses or pits

  In order to reduce the amount of machining and ensure good indirect contact of parts during assembly, bosses or pits are often made on the surface of parts.

4. Reasonable drilling structure

  In order to avoid axis deflection and bit breaking during drilling, the axis of the hole shall be perpendicular to the end face of the hole. Therefore, when there is a drilling structure on the inclined surface, a plane, boss or pit perpendicular to the drilling direction shall be designed, as shown in Figure 8.

Cutting process structure of metal parts

  The cutting process structure of metal parts includes chamfering and rounding, tool return groove or grinding wheel over travel groove, reasonable structure of drilling, boss and pit, etc.

1. Chamfering and rounding

  In order to facilitate assembly, chamfer is often machined at the shaft end or orifice, as shown in Fig. 6 (a). In order to avoid cracks on the stepped shaft or hole due to stress concentration, fillets are often machined at the turning point of the shoulder, as shown in Fig. 6 (b). The type and size of chamfering and rounding of parts shall be specified in the national standard.

What is the optimal structure of mechanical part drawing 7

Figure.6

2. Undercut or grinding wheel over travel groove

  In order to easily withdraw the tool during cutting and ensure the machining quality, the tool withdrawal groove or grinding wheel over travel groove is often machined at the shoulder of the machining surface, as shown in Fig. 6 (c). The structure and size of the over travel groove of the grinding wheel are specified in the national standard.

3. Bosses or pits

  In order to reduce the amount of machining and ensure good indirect contact of parts during assembly, bosses or pits are often made on the surface of parts, as shown in Figure 7What is the optimal structure of mechanical part drawing 8

What is the optimal structure of mechanical part drawing 9

Figure.7

4. Reasonable drilling structure

  In order to avoid axis deflection and bit breaking during drilling, the axis of the hole shall be perpendicular to the end face of the hole. Therefore, when there is a drilling structure on the inclined surface, a plane, boss or pit perpendicular to the drilling direction shall be designed, as shown in Figure 8.

What is the optimal structure of mechanical part drawing 10

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

市长含着秘书的奶头| 最新国产亚洲亚洲精品A| 国产精品一区二区三区在线视| 国产蜜月精品高清一区二区三区| 成人男女做爰免费视频网| 国产精品无码av在线一区| 中文字幕一区二区三区中文字幕| 美女穿黑丝被大鸡巴猛操| 操批在线观看视频| 国产合区在线一区二区三区| 国产a一级毛片午夜剧院| 顶的速度越来越快越| 日本熟妇一区二区三区四区| 日本不卡免费一区二区视频| 亚洲国产成人久久成人52| 青青河边草直播免费观看| 日日狠狠久久888av| 日韩有码一区二区三区在线观看| 亚洲综合无码一区二区丶| 欧美男女舔逼舔鸡巴视频| 美女被操的流水AV| 狠狠色伊人亚洲综合成人| 日韩av一区二区高清不卡| 91video国产一区| 一色道久久88加勒比一| 精品v欧洲高清欧美| 熟妇丰满大阴户熟妇啪啪| 亚洲一区二区三区大胆视频| 99久久国产综合精品女| 野外日逼视频免费看| 在线观看免费视频a v| —级v免费大片欧美| 精品久久久久久不卡亚洲| 丁香社区五月在线视频久| 精品久久av免费一区二区三区| 好舒服好大好粗视频| 大鸡吧天天草黑逼| 精品福利一区二区三区在线观看| 精品免费福利片国产| 国产操小骚逼视频| 非洲男生操男生屁眼视频|