欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Carbide sealing rings are usually made of WC-Ni carbide, due to its high hardness, bending strength, excellent wear resistance, toughness, and rigidity, does not emit radiation under neutron irradiation. As a result, it can be employed for mechanical sealing in conditions involving high temperature, high pressure, high rotational speeds, corros ive media, solid particle-laden media, and radioactive environments. WC-Ni carbide has found extensive application in fields such as axle seals in vehicle transmission systems, power shift transmissions, specialized pumps for demanding conditions, aircraft rotary seals, petrochemical industries, and nuclear power sealing.

We found that after approximately 80 hours of operation, there were numerous cracks on sealing rings’surface. Continuing to use it could lead to seal failure and result in significant economic losses. Therefore, it is necessary to conduct damage analysis and safety assessment to address this issue.

 

Test Materials and Methods

Test Materials

The test specimens were taken from the WC-Ni carbidesealing ring, designated as YWN8. The inner diameter of the sealing ring is 277 mm, the outer diameter is 302 mm, and the thickness is 20 mm, as shown in Figure 1. The primary material of the sealing ring is WC-Ni carbide, with a WC mass fraction of 89% and a Ni mass fraction of 11%. The mechanical properties of the WC-Ni carbide?are presented in Table 1.

How is?the Metal?Damage on?Carbide?Sealing Ring Formed? 1

How is?the Metal?Damage on?Carbide?Sealing Ring Formed? 2

Test method

Figure 1(a) depicts a solid view of the damaged sealing ring, which features 9 sets of groove weirs/barricades structures. As indicated by the labels 1 to 9 in Figure 1(b), the test is organized based on the distribution of groove weir areas in the sealing ring, dividing them into 9 groups. Further, these 9 groups are subdivided into 18 smaller regions. Upon magnified observation using a microscope, it was observed that 6 of these regions exhibited surface cracks: namely, 2-2, 3-2, 4-2, 5-2, 6-2, and 7-2, whereas the remaining regions showed no cracks on their surfaces.

For analysis, the test selected the areas of the damaged sealing ring where cracks appeared on the sealing surface. Subsequent steps involved surface residual stress testing, microscopic analysis of the damaged sealing ring’s microstructure, and identifying the reasons behind the appearance of cracks on the sealing ring’s surface.

 

Results and Analysis

Microscopic Analysis of the Damaged Area

Based on microscopic observations, the 6-2 damaged region exhibited the highest number of cracks. As shown in Figure 2, the SEM morphology of the 6-2 damaged region specimen reveals that there are a total of 5 cracks in the damaged zone. The origins of these cracks are at the junction between the groove weir and the barricade of the sealing ring. Each crack exhibits a trend of expansion along its length.

sealing ring

Analysis Using White Light Interferometer

Based on the SEM analysis mentioned above, it was found that although the crack volume was significant, the cracking depth was relatively shallow. To further investigate the damage characteristics during the sealing ring’s service, white light interferometry (Bruker Contour GT 3D white light interferometer) testing and analysis were performed on the damaged area of the sealing ring.

Figures 3 and 4 respectively depict the three-dimensional morphology at the location of the largest crack and the two-dimensional profile of the deepest point of the crack in the 6-2 damaged region. The results reveal that the roughness of the groove weir area is approximately 0.672 μm, the roughness of the barricade area is about 0.294 μm, and the height difference between the groove weir area and the barricade area is approximately 2.43 μm. The maximum width of the crack is around 126.4 μm, with a maximum length of about 2.75 mm. During testing, the maximum depth of the crack was found to be around 58.84 μm, while the depths of other crack regions were relatively smaller.

How is?the Metal?Damage on?Carbide?Sealing Ring Formed? 3

Chemical Composition Analysis of the Damaged Area

Energy-Dispersive X-ray Spectroscopy (EDS) Analysis

Based on the microscopic morphology analysis of the mentioned cracks, energy-dispersive X-ray spectroscopy (EDS) was used to analyze the chemical composition of points A, B, and C (corresponding to the specimen matrix, crack area, and the boundary strip between the groove weir and the barricade) as indicated in Figure 2. This was done to determine whether there had been any changes in material composition. The results are shown in Figures 5 to 7.

It can be observed that the specimen matrix primarily contains C, O, Ni, and W. In the crack area, in addition to the aforementioned four main elements, there are also impurity elements such as Cu, Fe, and Ti. This suggests that element transitions occurred in the sealing ring’s mating parts during service, resulting in impurity elements on its surface. The oxygen content in the crack area is significantly higher than that in the matrix, indicating the presence of oxides within the crack area and the occurrence of oxidative wear. Similarly, at the boundary strip between the groove weir and the barricade, in addition to the four main matrix elements, there are trace amounts of impurity elements such as Ti, Fe, and Zr. The damage situation here is similar to the crack area, with the presence of oxidative wear phenomena.

How is?the Metal?Damage on?Carbide?Sealing Ring Formed? 4

How is?the Metal?Damage on?Carbide?Sealing Ring Formed? 5

Electron Probe Microanalysis (EPMA) Analysis

To further investigate the extent of damage to the sealing ring and the characteristics of the cracked area, and to analyze the distribution of chemical composition in the damaged area of the sealing ring, electron probe microanalysis (EPMA) was employed to perform surface analysis on the cracked area within the box shown in Figure 8. Based on the EDS analysis results mentioned above, it was established that oxidative wear occurred during the service of the sealing ring. Therefore, four elements—C, W, Ni, and O—were selected for EPMA surface analysis of the test specimen.

Figure 9 presents the EPMA surface analysis results of the specimen. It can be observed that within the cracked area, there is a relatively higher distribution of C and O compared to the matrix, while the distribution of W within the cracked area is relatively lower compared to the matrix. On the other hand, the distribution of Ni within the cracked area does not exhibit significant differences compared to the matrix. It can be inferred that there is a mild level of oxidation within the cracked area, with the primary oxidation product being oxide of W.

How is?the Metal?Damage on?Carbide?Sealing Ring Formed? 6

How is?the Metal?Damage on?Carbide?Sealing Ring Formed? 7

Surface Residual Stress Analysis

To investigate the surface stress distribution of the sealing ring after service, a portable X-ray residual stress tester was used to conduct residual stress testing on the entire end face of both an unused C# sealing ring and a D# sealing ring (with cracks on the surface) that had been in service for 80 hours. The test positions and their results are shown in Figure 10. It can be observed that unevenly distributed surface residual stress can lead to cracks in the sealing ring. During service, residual stress is released due to friction, resulting in crack formation and failure of the sealing ring.

As shown in Figure 11, the residual stress gradually decreases along the radial direction of the sealing ring from the outer ring to the inner ring, transitioning directly into compressive stress in the barricade area. The stress value at the end of the groove weir area is higher than at the beginning (counter-clockwise along the sealing ring). Observed cracks are all located at the end of the groove weir area, indicating that the stress difference between the beginning and end of this area is relatively low compared to the stress difference between the arc ends. This difference in stress is insufficient to cause damage to the sealing ring.

 

How is?the Metal?Damage on?Carbide?Sealing Ring Formed? 8

How is?the Metal?Damage on?Carbide?Sealing Ring Formed? 9

 

 

 

Conclusione

(1) The majority of crack sources are located at the junction between the groove weir and the barricade of the sealing ring. Most cracks are distributed in the barricade area, where the extent of damage is greater compared to the groove weir area.

(2) Oxidative wear occurred in the damaged area of the sealing ring during service, primarily resulting in oxide products of tungsten (W). The oxidation is relatively mild.

(3) Due to a significant stress difference between the groove weir and the barricade areas of the sealing ring, material damage is prone to occur during service, leading to the initiation of microscopic cracks.

(4) The cracks are relatively shallow, and the damage to the sealing ring is minor. This will not have an immediate impact on operational safety within the short term.

How is?the Metal?Damage on?Carbide?Sealing Ring Formed? 10

 

 

 

 

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

男人草女人的骚逼逼| 久久69精品久久久久免| 女人被男人操到高潮视频| 久久久18禁一区二区网| 精品国产99亚洲一区二区三区| 欧美精品国产一区二区在线观看| 火辣美女的操大逼| 日韩欧美视频在线观看不卡| 美女最骚逼逼视频| 日本熟妇一区二区三区四区| 操纯欲女生小穴视频| 国产a一级毛片午夜剧院| 骚逼毛茸茸乱伦视频| 美国业余自由摘花管| 日本av在线一区二区| 曰木高清免费一本| 校花内射国产麻豆欧美一区| 99热这里只有精品97| 91成人精品国语自产拍| 中文字幕在线观一二三区| 大香蕉中码手机在线视频| 精品v欧洲高清欧美| 精品麻豆国产免费一区二区三区| 操女人大逼视频下载| 久久精品男人的天堂av| 操你的骚逼粉嫩AV| 一色道久久88加勒比一| 使劲操大骚逼av| av日韩在线观看一区二区三区| 看小伙草白女人比的黄片| 日本精品久久人妻一区二区三区| 啊服慢一点插入逼逼| 日日爱黄色毛片视频| 日本免费精品一区二区三区四区| 欧美日韩久久久一区二区三区| 被公侵犯中文字幕在线观看| 亚洲精品国产综合一线久久| 亚洲精品国产综合一线久久| 97超视频免费在线观看| 97超级免费视频在线观看| 最新的亚洲欧美中文字幕|