欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Why should we study nanoceramic bonded carbide? As we all know, WC-Co carbide consists of hard phase (WC) and bonding phase (ferrous metal). In harsh environments, the bonding phase is more susceptible to corrosion and oxidation than the hard phase, which limits its application in some fields. Therefore, reducing the content of the bonding phase is considered to solve this problem. In addition, metal Co is an expensive material and has a certain impact on human health. It is necessary to reduce the application of Co in carbide from the perspective of reducing costs and human health.

Nanoceramic bonded phase WC-based carbide refers to a type of carbide product that does not contain or contains a small amount of metal bonding agent (<0.5% by mass fraction). It has unparalleled excellent wear resistance, corrosion resistance, excellent polishing, and oxidation resistance compared to traditional carbide.

nanoceramic bonded phase WC-based carbide is a combination of ceramic hardness and carbide toughness, and products have been launched abroad. With its excellent wear and corrosion resistance, it can be used to make sandblasting nozzles, electronic packaging materials, heavy-duty sliding seal wear-resistant parts, etc.. with its excellent cutting performance, it can be used as tool and drill materials, especially for processing titanium/titanium alloys, which greatly improves work efficiency. and with its oxidation resistance and excellent polishing, it can be used as mold and decorative materials.

nanoceramic bonded carbide's micro structure

Characteristics of nanoceramic bonded carbide:

1Phase structure and carbon content of nanoceramic bonded phase carbide carbide are very sensitive to carbon content. For traditional carbide containing bonding phases, there is a certain range of carbon content to maintain a normal phase structure. If this range is exceeded, brittle n-phase or free carbon will appear. In contrast, the suitable carbon content of nanoceramic bonded phase WC-based carbide is not fluctuating like WC-Co alloy but is a fixed value.

2Composition design and properties of nanoceramic bonded carbide

Nanoceramic bonded carbide, which combine mechanical and wear resistance properties perfectly, are one of the most widely used ceramic-based materials in engineering. However, in most ceramic-based materials, the existence of metal bonding phases not only makes these composite materials have excellent flexural toughness but also affects certain properties, which limits their use. In addition, the low melting point of metal Co also greatly limits the application of WC-Co cutting tools in high-speed machining, which is prone to serious adhesive wear and oxidation wear. Moreover, the poor corrosion resistance, high cost, and toxicity of Co also limit the mechanical industry application of WC-Co carbide. Therefore, partially or completely replacing the Co bonding phase can expand the application of carbide. In recent years, ceramic bonding phases have attracted widespread attention in the scientific community as a new type of Co substitute.

 

The specific study using Nanoceramics as Binder Phase in Hardmetal Alloys

The Research Institute of Shandong University in China selected nanoscale Al2O3, ZrO2, and MgO as the binder phase for WC hardmetal alloys. The microstructure and mechanical properties of the hardmetal alloys were compared, and the toughening mechanism of the nanoceramic oxides was explored. The related paper, titled “Nano-ceramic replacing cobalt in cemented carbide as binder phase: Is it feasible?”, was published in the Journal of Alloys and Compounds.

Paper link:

https://linkinghub.elsevier.com/retrieve/pii/S0925838821043784

 

What is nanoceramic bonded carbide? 1

 

 

 

 

4Mechanism of Ceramic Binders Improving Toughness of carbide?Materials

What is nanoceramic bonded carbide? 2

fig.1 TEM micrographs of nanoceramic bonded carbide: (a) dislocations in WC-6Al2O3, (b) dislocations in WC-6ZrO2, (c) dislocations in WC-6MgO, and (d) intragranular and intergranular microstructures of WC-6ZrO2.

After sintering, the WC grains retained their initial grain size, and the second phase significantly suppressed the grain growth of the WC matrix by limiting grain boundary migration. Dislocations were observed in all three nanoceramic bonded carbide materials, which enhanced the tolerance of the carbide. Additionally, it was found that some nanoscale ZrO2 grains were distributed along the WC grain boundaries, while more ZrO2 nanograins were distributed within the WC grains, forming so-called intragranular nanostructures. Compared with the ceramic binder phase at the WC grain boundaries, the ceramics inside the WC grains were smaller in size.

What is nanoceramic bonded carbide? 3

fig.2 The toughening mechanism of WC-6Al2O3

What is nanoceramic bonded carbide? 4

fig.3 The toughening mechanism of WC-6ZrO2

What is nanoceramic bonded carbide? 5

fig.4 The toughening mechanism of WC-6AMgO

During the high-temperature sintering and cooling process, residual tensile stresses are generated around the ceramic binder phase due to differences in thermal expansion coefficient, which is favorable for crack deflection when the crack reaches the stress field. When an external load is applied to the nano-ceramic binder material, the difference in elastic modulus causes a redistribution of microscopic stress, thereby increasing the material’s toughness. All three nanoceramic bonded carbide materials exhibit crack bridging, effectively reducing crack propagation energy. Non-branching cracks were also found in the carbide, greatly increasing the energy consumption of the main crack propagation and effectively slowing down crack propagation.

What is nanoceramic bonded carbide? 6

fig.5 XRD spectra of the polished surface and fractured surface of the WC-6ZrO2 specimen

During the fracture process of WC-ZrO2 carbide, when external stress is applied to the carbide, stress concentration occurs near the crack tip, promoting the transformation of t-ZrO2 to monoclinic m-ZrO2. This transformation significantly impedes the crack propagation by enhancing stress relaxation near the crack tip. In addition, the volume expansion caused by phase transformation compresses the surrounding matrix, which is conducive to crack closure. Furthermore, surface phase transformation can generate compressive stress, greatly increasing the toughness of the material.

Conclusione

In summary, compared with traditional WC-Co carbide, nanoceramic bonded carbide exhibit a better combination of fracture toughness and hardness. Compared with micro-ceramic bonded? carbide, the hardness and fracture toughness of nano-ceramic bonded phase carbide are simultaneously enhanced. This excellent hardness of nano-ceramic bonded phase carbide is crucial for high-speed machining applications and is expected to become a candidate material for high-speed machining tools.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

久久久久人妻一区精品加勒比| 午夜国产三级一区二区三| 国奴精品毛片av一区二区三区| 国产精品粉嫩懂色av| 色老头av亚洲三区三区| 日本欧美一区二区三区| 久久久久久高清无码视频| 美女逼男逼小穴小骚下载| 中文字幕人妻一区二区三区久久| 中文字幕乱码一区三区免费| 午夜成人理论片在线观看| 日韩欧美一二三区| 日韩国产精品视频一区| 久久国产亚洲高清| 三上悠亚精品一区二区久久| 福利国产第一视频| 国产乱色国产精品免费播放| 久久久久久高清无码视频| 美女呻吟翘臀后进爆白浆| 女人被躁到高潮嗷嗷叫小| 免费观看的黄视频一级国产| 小嫩骚逼操死你视频| 色欲精品一区二区三区AV| 久久高清中文字幕第一页| 欧美 亚洲 日本 国产| 久久精品人人爽人人爽快| 亚洲av熟妇高潮精品啪啪| 精品久久久久五月婷五月| 成人久久久久久蜜桃免费| 美女被大屌操大骚逼| 爱爰哦好粗好猛操b视频| 午夜场射精嗯嗯啊啊视频| 鸡巴插进缝里 日本| 精彩欧美一区二区三区| 18岁以下禁看美女的胸| 亚洲av 又黄又爽十大| 九九在线视频热线视频精选| 日韩中文字幕一区二区高清| 欧美性一区二区三区五区| 色噜噜人妻丝袜中文字幕| 成人男女做爰免费视频网|