欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Comment la chaleur de coupe est générée

The cutting heat is generated in three deformation zones. During the cutting process, the metal deformation and friction in the three deformation zones are the root cause of the cutting heat. Most of the work of deformation and friction during the cutting process is converted into cutting heat. The figure below shows the location of the heat generated by the cutting heat and the dispersion.

What is Cutting Heat Transfer 2

The amount of heat generated by the cutting heat and the proportion of heat generated in the three deformation zones vary with the cutting conditions. When processing plastic metal materials, when the flank wear amount is not large, and the cutting thickness is large, the heat generated in the first deformation zone is the most. When the tool wear amount is large, and the cutting thickness is small, the third deformation zone The proportion of heat generation will increase. The following diagram shows the ratios of heat generated in the three deformation zones to the thickness of the cut when machining nickel, chromium, molybdenum, vanadium and steel with a carbide tool.

Diagram 1. three ratios of heat generated by nickel, chromium, molybdenum

  1. First deformation zone 2-second deformation zone 3-third deformation zone
What is Cutting Heat Transfer 3

When processing brittle materials such as cast iron, due to the formation of breaking chips, the contact length of the chip is small, the friction on the rake face is small, and the proportion of heat generation in the first and second deformation zones is decreased. Therefore, the proportion of heat generated in the third deformation zone is relatively increased. .

The heat of cutting generated during the cutting process is dissipated outside the cutting zone by the chips, the workpiece, the tool and the surrounding medium. The proportion of heat transfer by each route is related to the cutting form, the tool, the workpiece material and the surrounding medium. 50%~86% of the heat in the turning process is taken away by the chip, 40%~10% is transferred into the turning tool, 9%~3% is introduced into the workpiece, and about 1% is introduced into the air. When drilling, 28% of the heat is taken away by the chips, 14.5% is transferred into the tool, 52.5% is introduced into the workpiece, and about 5% is introduced into the surrounding medium.

In addition, the cutting speed “υ” also has a certain influence on the heat transfer ratio of each route. The higher the cutting speed, the less heat is carried away by the chips. The chart below shows the effect of enthalpy on the heat transfer.

Dia.3 The cutting velocity’s influence on cutting heat transfer


I—Tool II—Workpiece III—Chip

What is Cutting Heat Transfer 4

Cutting heat and its effect on the cutting process

The heat generated by cutting a workpiece with a tool is called cutting heat. Cutting heat is also an important physical phenomenon in the cutting process, which has many effects on the cutting process. The heat of the cutting is transferred to the workpiece, which causes thermal deformation of the workpiece, thus reducing the machining accuracy. The local high temperature on the surface of the workpiece deteriorates the quality of the machined surface.

The heat of cutting that is transmitted to the tool is an important cause of tool wear and tear. Cutting heat also affects cutting productivity and cost by causing tool wear. In short, cutting heat has direct and indirect effects on the quality, productivity and cost of cutting. Research and master the general rules of heat generation and change of cutting heat, limit the adverse effects of cutting heat to the allowable range, and cut the machining. Production is of great significance.

Main factors affecting cutting temperature

First, the influence of cutting amount on cutting temperature

1. Cutting speed has a significant effect on cutting temperature. Experiments have shown that as the cutting speed increases, the cutting temperature will increase significantly.

2. The feed rate f also has a certain influence on the cutting temperature. As the feed rate increases, the amount of metal removal per unit time increases, and the cutting heat generated during the cutting process also increases, causing the cutting temperature to rise.

However, the increase in cutting temperature as the feed rate increases is not as significant as the cutting speed.

3. The depth of cut ap has little effect on the cutting temperature. Since the heat generated in the cutting zone increases proportionally after the depth of cut ap increases, the increase in the cutting temperature is not significant because of the improved heat dissipation conditions.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

国产日本欧美激情| 日本中文字幕无人区一区二区| 小美女淫荡的视频| 大屌把女生逼逼操肿国产| 男人透女人视频短篇| 国产妇女乱一性一交| 久久久久久久久黄片观看| 美女穿黑丝被大鸡巴猛操| 青青河边草直播免费观看| 抽插肥嫩小穴的视频| 日本男人捅女人机机| 色橹橹欧美在线观看视频高清免费| 国产熟女视频一区二区三区| 插到底啊啊啊视频| 国产精品视频一区二区三区八戒| 国产精品三级一区二区| 毛片日产av一区二区三区四区| 啊灬啊别停灬用力啊男男在线观看| 91精品国产综合久久久蜜| 久久久中文字幕一区| 精品国产自在久国产应用| 欧美亚洲干妞内射| 久久精品国产自清天天线| 一区二区国产欧美日韩无| 奇米一区二区三区视频在线观看| 日韩中文字幕一区二区高清| 最新国产亚洲亚洲精品A| 亚洲精品成人无码| 日日爱黄色毛片视频| 精品无码一区二区三区无码| 黑大吊肏小騷逼噴水| 藏经阁91福利私人试看| 欧美日韩亚洲人人夜夜澡| 操俄罗斯美女bb| 国产精品视频一区二区三区八戒| 久久一级高潮a免费| 国产精品操大屁股老淑女| 男人的下面进女人的下面在线观看| 色欲色欲色视频综合| 那种视频在线观看你懂的| 三男狂插小穴穴视频|