欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

In machining, the tools used for hole processing are an essential part of mechanical operations. These tools include drills, reamers, boring tools, countersinks, and internal surface broaches, among others. Among various machining techniques, boring is considered a more challenging process. It involves using a single blade (or tool holder) to machine micrometer-level holes with specific tolerances, such as H7, H6, etc.

A cemented carbide boring tool is one type of tool used for boring operations. It is commonly used for internal hole machining, hole enlargement, internal contouring, and similar tasks. The tool may have one or two cutting edges and is designed specifically for roughing, semi-finishing, or finishing operations on existing holes. Cemented carbide boring tools can be used on boring machines, lathes, or milling machines.

boring tool

Types of Boring Tools

Cemented Carbide Boring Tools are mainly classified into three types based on the number of cutting edges: single-edge boring tools, double-edge boring tools, and multi-edge boring tools. They can also be categorized according to the processed surface: through-hole boring tools, blind-hole boring tools, step-hole boring tools, and end-face boring tools. Furthermore, they can be classified by their structure: solid type, assembly type, and adjustable type.

Below, we will focus on two commonly used cemented carbide boring tools: the single-edge boring tool and the double-edge boring tool.

 

Single-edge Boring Tool

The structure of the single-edge boring tool is similar to that of a lathe tool. The tool head is mounted in the tool bar and can be manually adjusted and secured in position with a screw, depending on the size of the hole being processed. The tool head can be installed perpendicular to the boring bar axis for through-hole boring or inclined for blind-hole boring. as only one main cutting edge is involved in the operation, the production efficiency is relatively low. Therefore, it is often used for single-piece or small-batch production.

When the nut is rotated, the spindle with the tool head can move in a straight line along the directional key, and the reading precision of the dial indicator can reach 0.001 millimeters.

What is a Cemented Carbide Boring Tool? 2

Double-edge Boring Tool

The double-edge boring tool has two symmetric cutting edges, allowing the radial forces during boring to cancel each other out. The size and accuracy of the workpiece hole are ensured by the radial dimension of the cemented carbide boring tool. The double-edge boring tool has two cutting teeth cutting simultaneously on both sides of the center, and the radial forces generated during cutting balance each other out, which allows for increased cutting amounts and higher production efficiency. Double-edge boring tools are further classified into floating boring tools and fixed boring tools, depending on whether the cutting blade floats on the boring bar. Floating boring tools are suitable for precision machining of holes and can produce highly accurate and smooth-surfaced holes, functioning similar to a reamer.

What is a Cemented Carbide Boring Tool? 3

Materials of Boring Tool Inserts

The boring tool inserts can be made from various materials, including cemented carbide, metal ceramics, ceramics, PCD (Polycrystalline Diamond), and PCBN (Polycrystalline Cubic Boron Nitride).

Cemented carbide boring tool inserts mostly utilize PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition) coatings. They are suitable for machining a wide range of materials, such as most steels, titanium alloys, cast iron, and non-ferrous metal alloys. They are also used for processing high-temperature alloys and austenitic stainless steels.

Ceramic inserts can be categorized into two main types: alumina-based (Al2O3) and silicon nitride-based (Si3N4). They are used for boring operations on alloy steels, tool steels, and martensitic stainless steels with a hardness greater than HRC60. Ceramic inserts are also employed for precision boring of hardened steels, cast iron (with a hardness of HRC45 or higher), nickel-based, and cobalt-based alloys.

Silicon nitride-based ceramic inserts come in coated and uncoated grades. They are used for boring operations on grey cast iron and nodular cast iron, as well as for high-temperature alloy machining.

Metal ceramics are composite materials consisting of titanium carbide or titanium carbonitride as the base material combined with metals such as nickel or cobalt as a binder. They exhibit good resistance to chip adhesion and plastic deformation, making them suitable for precision boring with stringent surface finish requirements. Metal ceramic inserts are used for high-speed precision and semi-precision boring of most carbon steels, alloy steels, and stainless steels. When machining grey cast iron and nodular cast iron, they also offer long tool life and good surface finish.

Polycrystalline Diamond (PCD) inserts have PCD cutting edges brazed onto a cemented carbide substrate. The cutting edges of PCD tools maintain sharpness for an extended period, making them suitable for high-speed cutting.

Polycrystalline Cubic Boron Nitride (PCBN) has a hardness second only to PCD. PCBN inserts are commonly used for precision boring of hardened steels, tool steels, high-speed steels (HRC45~60), grey-hard cast iron, and powder metallurgy materials. In high-speed machining, PCBN inserts can achieve longer tool life compared to other types of tool inserts when machining the same workpiece.

What is a Cemented Carbide Boring Tool? 4

The difference between a boring tool and a reamer

Boring Tool

Boring tools are generally equipped with a cylindrical shank, although some larger workpieces may use square shanks.

Boring tools often have cutting edges on both the radial and axial sides.

Boring operations are referenced to the rotation axis of the machine tool’s main spindle.

The chips produced during boring are continuous.

The precision of boring operations depends on the machine tool, and the surface finish depends on the skill level of the operator. Boring tools are commonly used for achieving high straightness requirements in hole machining.

Reamer

Reamers are mostly constructed with a working part and a shank. They only have radial cutting edges.

Reamers are positioned based on the hole itself.

Reamer chips are typically in the form of small chips or powdery particles that stick to the tool.

Reamers are used for hole machining with higher surface finish requirements and lower straightness requirements.

In summary, the key differences between a boring tool and a reamer lie in their structure, cutting edges, positioning reference, chip formation, and the types of hole machining they are commonly used for. Boring tools are more versatile for achieving precise straightness requirements in hole machining, while reamers are better suited for achieving high surface finish requirements in holes.

 

 

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

成人精品视频区一区二区三| 中文字幕欧美中日韩精品| 色综合色狠狠天天综合色| 欧美国产中文高高靖| 把女生操出水的视频| 色综合色狠狠天天综合色| 国产精品一区二区三区涩涩av| 在线观看日韩欧美| 97超级免费视频在线观看| 精品少妇一区二区三区中文字幕| 黄片大鸡吧操小逼| 亚洲日韩国产欧美久久久| 好想插进去捅一捅| 欧美国产综合日韩一区二区| 猛哥操女人B视频| 国产亚洲精品一区久久| 一级特黄大片色欧美精品| 国内揄拍国内精品| 大胸美女被c的嗷嗷叫视频| 大鸡插骚货人人色| 久久免费国产视频| 人人摸人 人干人人草操| 亚洲av熟妇高潮精品啪啪| 国产欧美一区二区精品久久久| 新视觉亚洲三区二区一区理伦| 国产乱子伦视频一区二区三区| 大胸美女被c的嗷嗷叫视频| 亚洲综合网伊人中文| 欧美一级特黄大片在线看| 大胸美女被c的嗷嗷叫视频| 69国产精品久久久久久人| 亚洲国产国产综合一区首页| 下载风骚美女想吃大机吧| 为什么搜索不到裸体| 潮中文字幕在线观看| 欧美黄色三级成人小视频| 国奴精品毛片av一区二区三区| 啊啊啊好疼视频进来| 黄色三极片在线观看| 国产一国产一级毛片无码视频百度| 爱男爽高潮鸡穴视频|