欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

In metal cutting processes, the fracture behavior of materials directly affects metal cutting efficiency, surface quality, and tool life. The ideal cutting process should produce continuous chips. However, under certain conditions (e.g., when machining brittle materials or with specific process parameters), the material may fracture, resulting in discontinuous chips. Such fractures can either be a result of process optimization (e.g., improving chip evacuation) or a source of machining defects (e.g., surface microcracks). This article systematically explores the mechanisms, influencing factors, and control methods of material fracture in metal cutting.

Fracture Process

The fracture and separation of materials during metal cutting constitute a complex dynamic process involving multiple physical mechanisms. Research indicates that this process primarily consists of three key stages:

Plastic deformation occurs first. Crack initiation and propagation follow. Finally, material separation is achieved.

Based on extensive experimental data and theoretical analysis, this phenomenon can be systematically explained as follows:

Why Fracture Happens During Metal Cutting? The Science Behind Chip Formation 2

Fracture Types and Mechanisms

According to material response and processing conditions, fracture can be divided into the following categories:

Shear fracture

Dominant type, where shear bands form at the tool-workpiece contact surface, and material separates along slip planes. For example, pure shear fracture is common in highly plastic materials (such as low-carbon steel), with fracture surfaces appearing wedge-shaped; microvoid coalescence fracture achieves separation through microvoid nucleation and aggregation.

Tensile fracture

At the tool’s leading edge or chip’s free surface, material forms tear ridges due to tensile stress, mostly occurring in brittle materials or under high cutting speed conditions.

Cleavage fracture

Under low temperature or impact loading, cracks rapidly propagate along specific crystal planes (cleavage planes), producing flat and shiny fracture surfaces, commonly seen in body-centered cubic metals (such as ferritic steel).

Basic Stages of Fracture

The fracture in metal cutting can be divided into three stages:

Crack initiation: When the tool contacts the workpiece, localized stress concentration leads to the formation of microcracks inside or on the surface of the material. For example, in the first deformation zone (chip formation zone) during cutting, the material undergoes slip deformation due to shear stress, thereby initiating cracks.

metal cutting fracture

Crack propagation

As the tool advances, the crack extends along specific paths. The propagation direction is influenced by stress state and material properties, potentially manifesting as shear fracture (along the direction of maximum shear stress) or tensile fracture (along the direction of maximum normal stress).

 

Final separation

The crack penetrates through the material to form chips, and the resulting fracture surface may exhibit either ductile (fibrous) or brittle (crystalline) characteristics.

 

Dynamic Fracture in Cutting Process

Stage Division

Taking the cutting card theory illustrated in the following diagram as an example, the cutting process is divided into four stages: initial contact, crack initiation, material uplift, and cyclic phase. The crack initiation stage represents the critical point for fracture formation, while the cyclic phase involves periodic crack nucleation, resulting in saw-tooth shaped chips.

Deformation Zone Effects

Primary Deformation Zone (A-H region): Material undergoes intense shear deformation, forming initial cracks.

Secondary Deformation Zone (G-E region): Friction between chip and tool causes additional plastic deformation, potentially accompanied by localized fracture.

Tertiary Deformation Zone (E-D region): Workpiece surface material fractures due to tool flank face compression, forming the machined surface.

 

Key Influencing Factors

Tool Parameters: The tool’s rake angle, clearance angle, and major cutting edge angle affect stress distribution. For example, increasing the major cutting edge angle reduces cutting forces but may alter crack propagation paths.

 

Cutting Speed

Low speed → Ductile fracture; High speed → Brittle fracture (thermal softening effect reduces material strength).

Feed Rate

Large feed increases cutting thickness, promoting fracture (as utilized in chip breaker design).

Tool Rake Angle

Negative rake angle increases compressive stress, suppressing fracture; Positive rake angle intensifies tensile stress.

Edge Roundness Radius

Dull cutting edges enhance extrusion, easily inducing microcracks in brittle materials.

Clearance Setting

In shearing operations, the clearance between upper and lower blades (typically 5-10% of material thickness) controls crack meeting position. Improper clearance leads to increased burrs or rough fracture surfaces.

Material Properties

High ductility materials (e.g., aluminum) tend toward ductile fracture, forming fibrous fracture surfaces; Brittle materials (e.g., cast iron) readily exhibit cleavage or intergranular fracture.

Bearbeitung Conditions

High-speed cutting may induce adiabatic shear bands, causing periodic cracks and saw-toothed chips; Low temperature or alternating loads promote brittle fracture.

Material Characteristics

material type fracture tendency Reason
low carbon steel low High plasticity, easy to form continuous chips
gray pig iron high Graphite sheets weaken the matrix and promote cracking
titanium alloy medium The local shear band leads to adiabatic shear fracture

 

Performance in Actual Metal Cuttings

Chip morphology: Continuous cutting produces ribbon-like chips, while periodic fracture leads to saw-toothed chips.

Surface quality: Incomplete fracture generates burrs, whose height is positively correlated with clearance and material ductility. For example, excessive clearance significantly increases burr height.

Energy consumption: The fracture process requires overcoming material shear strength and plastic deformation energy; optimizing tool angles can reduce energy consumption.

 

Typical Case Analysis

Case 1: Crumbling Control in Cast Iron Cylinder Metal Cutting

Problem: Edge chipping occurs when cutting gray cast iron, and surface roughness exceeds standards.

Solution:

Switch to CBN tools (high hardness reduces compressive stress);

Use small feed rate (f = 0.1 mm/rev) and negative rake angle (?5°).

 

Case 2: Adiabatic Shear Fracture in Titanium Alloy Aerospace Components

Problem: Localized melting and adhesion of chips to the tool during cutting.

Solution:

High-pressure coolant to suppress temperature rise;

Optimize cutting speed to vc = 50 m/min.

 

Zusammenfassung

Fracture in metal cutting results from the combined effects of mechanical response and metal cutting parameters. By controlling tool design (e.g., rake angle, clearance), optimizing cutting parameters (e.g., speed, feed rate), and considering material properties (e.g., ductility, fracture toughness), efficient and low-damage material separation can be achieved. Understanding fracture mechanisms is crucial for improving metal cutting quality, reducing burrs, and extending tool life.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

午夜性无码视频在线播放| 国产午夜久久精品一区四虎| 任你橹在线久久精品9| 女生的鸡鸡色色软件| 看一下日本人插逼逼洞视频| 韩美国男人叉女人| 啊啊好想被大鸡巴操视频| 美女被插b在线观看| 欧美人人做人人爽人人喊| 日本免费暖暖在线小视频| 91久久愉拍愉拍国产一区| 一区二区三区 日韩在线| 亚洲午夜国产片在线观看| 日韩欧美一二三区| 三级成人国产高清视频| 日本老熟妇毛茸茸| 中文字幕一高清免费视频| 亚洲国产一区二区不卡在线资源| 被春药女高潮抽搐喷水视频| 小骚货舔小骚逼视频| 亚洲日韩不卡一区二区三区| 亚洲天堂成年人在线视频| 国产成人无码AV一区二区三区| 亚洲福利小视频在线观看| 内射白嫩少妇超碰| 在线观看国产日韩欧美一区二区| 爆乳1把你榨干在线观看| 咪咪爱一级特黄大片| 日韩成人伦理片在线观看| 亚洲 欧美 日韩 主播| 天堂久久久久久久久久久| 日本亚洲欧洲一区二区| 日国产精品1卡二卡三卡| 毛片日产av一区二区三区四区| 日韩有码视频在线| 影音先锋天堂网亚洲无码| 美国业余自由摘花管| av人摸人人人澡人人超| 91久久愉拍愉拍国产一区| 被公侵犯中文字幕在线观看| 国产乱子伦视频一区二区三区|