欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The helix angle can be divided into various options such as 30°, 45°, 50°, and so on, offering a diverse range of choices. Due to its advantages in terms of swift, smooth, and efficient cutting, as well as a broad range of applications, the helical-edged end mill has gained widespread use in milling operations compared to the straight-edged counterpart. Now, let’s delve into how to differentiate and use them.

What You Need to Know about Helix Angle of End Mills 1

The Function of the Helix Angle

The larger the helix angle of an end mill, the longer the contact length between the workpiece and the cutting edge. This can reduce the load borne by the cutting edge per unit length, thereby extending the tool life. However, at the same time, cutting resistance increases, so it is necessary to consider using a tool holder with high clamping rigidity.

 

Relationship between Helix Angle and Other Elements

Helix Angle and Cutting Edge Length

For end mills with a small helix angle, the cutting edge is shorter (length indicated by the blue line).

What You Need to Know about Helix Angle of End Mills 2

For end mills with a large helix angle, the cutting edge is longer (length indicated by the red line).

What You Need to Know about Helix Angle of End Mills 3

Helix Angle and Cutting Resistance

The tangential cutting resistance decreases with the increase of the helix angle, while the axial cutting resistance increases with the increase of the helix angle.

Helix Angle and Lead Angle

The increase in helix angle results in an actual increase in the lead angle of the end mill, making the cutting edge sharper.

Helix Angle and Machined Surface Precision

Generally, the perpendicularity and flatness tolerances of the machined surface increase with the increase of the helix angle. However, after the helix angle exceeds 40°, there is a tendency for these tolerances to decrease with the further increase of the helix angle.

Helix Angle and Tool Life

The wear rate of the circumferential cutting edge is generally proportional to the size of the helix angle. On the other hand, when the helix angle is very small, even slight tool wear significantly reduces the cutting performance, leading to vibration and rendering the tool unusable. When the helix angle is too large, tool rigidity decreases, leading to a reduction in tool life.

Helix Angle and Workpiece Material

When machining soft materials with low hardness, a large helix angle is used to increase the lead angle and improve the sharpness of the cutting edge. When machining hard materials with high hardness, a small helix angle is used to reduce the lead angle and enhance the rigidity of the cutting edge.

 

Principles for Choosing the Helix Angle

For difficult-to-cut materials such as stainless steel with low thermal conductivity and significant heat impact on the cutting edge, using an end mill with a large helix angle in cutting helps extend the tool life.

Furthermore, the characteristics of the finished surface change due to the helix angle. For instance, when smooth finishing is required, there are times when end mills with a large helix angle can be employed. However, when using end mills with a large helix angle, cutting resistance and the force causing the right helix angle tool to pull outward increase. Therefore, corresponding measures must be taken, such as using a tool holder with high clamping rigidity. Although this ensures the tool’s rigidity, in cases where the workpiece rigidity is low, such as in thin sheet processing, end mills with a small helix angle are sometimes used.

 

Characteristics of Different Helix Angles

End mill with a large helix angle of 50 degrees

This vertical milling cutter is designed for precision side milling. It offers excellent tool rigidity, minimizing deflection during side milling, and simultaneously suppressing the risk of tool tip chipping to the greatest extent possible.

helix angle

60° helix angle vertical milling cutter

This helix angle is suitable for high-speed cutting of difficult-to-cut materials such as SUS304 stainless steel. For hard-to-cut materials with low thermal conductivity, where the temperature at the cutting edge is prone to rise during cutting, a 60° helix angle helps suppress the impact of cutting heat on the cutting edge.

What You Need to Know about Helix Angle of End Mills 4

45° helix angle vertical milling cutter

Adopting a 45° helix angle can better achieve high-speed machining and high wear resistance.

What You Need to Know about Helix Angle of End Mills 5

Zusammenfassung

In conclusion, the helix angle is one of the primary parameters of helical-edged end mills, and changes in the helix angle significantly impact the cutting performance of the tool. With the development of CNC machining technology and flexible manufacturing, altering the helix angle in tool manufacturing has become feasible and straightforward. Further in-depth research into the various effects of helix angle size on the cutting performance of helical-edged end mills, when combined with the performance of machine tools and fixtures, and considering factors such as material properties, machining precision, efficiency, tool material, and tool life, can undoubtedly play a crucial role in optimizing the helix angle size and promote efficient and precise milling processes.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

大肉棒插了按摩视频| 五月天亚洲激情综合av| 大黑屌爆操日本女人| 天天躁久久躁中文字字幕| 欧美一区二区三区久久国产精品| 国产乱子伦视频一区二区三区| 三级片在线无码播放| 国产午夜福利视频第三区| 日本乱人伦中文在线播放| 九九热在线精品免费看| 亚洲AV无码一区二区三区系列| 中文字幕你懂的av一区二区| 男人扒开女人腿狂躁免费| 骚穴 操我 视频| 天堂丝袜人妻中文字幕在线| 日本精品久久不卡一区二区| 尤物网三级在线观看| 国产亚洲一区二区手机在线观看| 久久婷婷综合五月一区二区| 免费黄色 操逼视频| 正在播放 国产精品推荐| 久久久精品国产乱码内射| 男生和女人靠逼视频| 男生舔女生下面黄色视频| 国产激情内射免费精品| 日韩伦理视频一区二区三区| 精品一区二区三区女性色| 老头鸡巴操老太骚逼| 美女大鸡操很多水在线看| 久久精品人人爽人人爽快| 日韩中文字幕一区二区高清| 国产精品无码av在线一区| 日本亚欧乱色视频69室| 九九视频免费在线观看| 欧美日韩综合在线一区| 97人妻精品一区二区三区视频| 女人操女人大逼大片| 国产无圣光一区福利二区| 欧美日韩精品视频在线第一区| 久久久18禁一区二区网| 亚洲精品美女久久久|