欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Carbide heat treatment is a critical process that plays a crucial role in enhancing the performance of hard alloys. By carefully designing and adjusting heat treatment parameters, the microstructure and mechanical properties of carbides can be controlled, enabling them to adapt to different working environments and application requirements.The use of?carbides in the mold industry is increasing day by day, so exploring and studying the heat treatment of carbides is of practical significance.

The Impact of Heat Treatment on the Strength of Carbides

Due to the different solubility of WC in Co at different temperatures, the possibility of achieving precipitation hardening of the binder phase through quenching at the solubilization temperature and subsequent aging is provided. Quenching can suppress the precipitation of WC and the isostructural transformation of Co (Co hexagonal close-packed, Co face-centered cubic). Literature reports indicate that the strength of an alloy with 40% cobalt can increase by about 10% after quenching, but the strength of an alloy with 10% cobalt decreases after quenching. Annealing can also cause a decrease in the strength of the alloy, as shown in Table 1 and Figure 1.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 2

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 3

The Impact of Heat Treatment on the Hardness of Carbides

During the aging process of WC-Co alloy, the precipitation of Co3WCX and the formation of a dense microstructure occur, resulting in an increase in the hardness of the alloy. However, when the subsequent transformation leads to the precipitation of Co3W, the hardness of the alloy decreases. Experimental data is illustrated in Figure 5 and Figure 6.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 4

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 5

While the presence of Co3WCX after heat treatment slightly increases the hardness of the alloy, considering the extended heat treatment time and the decrease in flexural strength, it is believed that the precipitation of the Co3WCX phase for dispersion strengthening of the binder phase is not an effective method for developing new grades. Alternative approaches should be explored. Aging treatment involves maintaining the alloy at a specific temperature for a certain duration, allowing it to reach a thermodynamic equilibrium state. This can lead to the precipitation of phases that enhance hardness in the alloy, such as the Co3WCX phase. Aging treatment has a positive impact on improving the hardness and strength of carbides.

Applying different heat treatments for various grades

To enhance alloy performance, specific heat treatment processes tailored to different grades of Carbides are essential for achieving optimal properties. We have consolidated typical results of heat treatment for Carbides in Table 2 for your reference.

Typical results of heat treatment for Hartmetalls

Welchen Einfluss haben W?rmebehandlungsprozesse auf die mechanischen Eigenschaften von Hartmetall? 6

Fazit

Firstly, heat treatment has a significant impact on the crystal structure and grain size of carbides. By controlling the heating and cooling rates, the growth and arrangement of crystals can be adjusted, affecting the hardness and strength of alloy. For example, an appropriate quenching process can create a dense lattice structure, increasing the hardness of alloy.

Secondly, heat treatment also influences the wear resistance of alloy. By adjusting the elemental composition and distribution of phases in the alloy, the surface performance of hard alloys can be improved, making them more resistant to wear and corrosion. This is crucial for the performance of hard alloys in cutting, grinding, and other high-wear applications.

Additionally, heat treatment can also adjust the toughness and impact resistance of hard alloys. Through proper aging treatment, the binder phase in the alloy can be optimized, enhancing its bending and impact resistance. This is of great significance for the application of hard alloys in high-load and impact environments.

Overall, by precisely controlling the heat treatment process, comprehensive improvements in the performance of hard alloys can be achieved, making them better suited to the requirements of the industrial and manufacturing sectors.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

亚洲视频免费观看| 国产精品亚洲一区二区三区极品| 国产午夜久久精品一区四虎| 日韩亚洲AV无码一区二区不卡| 成人男女做爰免费视频网| 大鸡吧天天草黑逼| 人人妻人人澡精品99| 国产精品久久一区二区三区动| 美女玩奶子和鸡巴| 国产一区二区三区 韩国女主播| 91秦先生全集在线观看| 国产精品视频一区二区三区分享| 让女人下面出水视频| 鸡巴插骚逼真舒服| 小美女淫荡的视频| 日本免费暖暖在线小视频| 日韩毛片一区视频免费在线观看| 欧美尤物操逼毛茸茸真爽| 天天免费的无码AV| 96精品久久久久久蜜臀浪| 国产青青操骚货在线观看| 男人几把操女人嫩穴| 国产一区二区三区三级88| 另类亚洲欧美专区第一页| 日韩视频无码日韩视频又2020| 一区二区国产精品免费视频| 内射后入在线观看一区| 最新免费高清无码片| 操美女干逼调教捆绑视频| 美女麻豆颜色光屁股眼子| 无码中文字幕免费一区二区三区| 美女骚逼被操出白浆| 国产在线中文字幕一区二区三区| 国产乱色国产精品免费播放| 精品精品国产一区二区性色av| 国产精品高潮久久久久a| 国产剧情使劲操我逼| 夫妻性生活在线免费视频| 少妇无码一区二区二三区| 操你的骚逼粉嫩AV| 久久综合久久久久综合大|